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Abstract. Verhulst equation in differential and discrete form is very important in different fields of material
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Citations: Yelena Kozmina. Discrete Analogue of the Verhulst Equation and Attractors. Methodological
Aspects of Teaching – Innovative Infotechnologies for Science, Business and Education, ISSN 2029-1035
– 1(24) 2018 – Pp. 3-12.

Keywords: Logistic Equation; Verhulst Equation; attractors; chaos; teaching.
Short title: Logistic Equation: Teaching.

Introduction

Logistics is the art of computing. In the middle of the
XIX century, Belgian mathematician Pierre François Ver-
hulst studied the population growth. He established that ini-
tial stage of growth is approximately exponential; then, as sa-
turation begins, the growth slows, and at the maturity, growth
stops. In 1838 Verhulst introduced the logistic equation with
a maximum value for the population (partial logistic growth
model) [1]. A typical application of the logistic equation is a
common model of population growth.

Applications of logistics function are useful in many
fields, including material science (chemistry, geoscience),
bioscience (biomathematics, artificial neural networks, eco-
logy), sociology (political science, mathematical psychology,
demography), economics (spreading of innovations, finance),
linguistics (machine learning).

Presented topic is included in the master study course of
Applied mathematical methods in the study programme In-
formation systems (ISMA, Riga, Latvia).

This work is devoted to estimation of the methodologic-
al aspects of teaching, when differential and discrete models
for solving the advanced tasks are presented. Moreover, the
profit of attractors is discussed in student-friendly manner.

1. Literature review

Traditional estimation of dynamical systems is described by
Robinson [2]. Several useful mathematical methods based
on iterations allow estimating the one-dimensional dynamics
and describing the chaos as a determined system. Also, Stro-
gatz [3] represents an overview of mentioned systems for
practical needs in natural sciences. Pearl [4] analyses the
cause and effect relations which are fundamentally determin-
istic. He pointed out that cause and effect analysis must be

estimated using probability factor.
Generally, conception of chaos was presented and analysed

by Holmgren [5], Kinnunen [6], Alligood [7]. Peitgen [8] de-
scribes several types of attractors. Muray [9] analyses the
biological oscillators. Kapica et al. [10] represent the com-
plicated structures with bifurcational behaviour.

2. Logistic growth model
The main idea was formulated by Verhulst [1]: the rate of
reproduction is proportional to both the existing population
and the amount of available resources (all else being equal).

Let x=x(t) represents the population size at time t, when k
is the maximum possible population size (the capacity of the
environment), x∈[0;k]. Two initial assumptions for deriving
the equation are presented below.

1. The rate of reproduction of the population is proportion-
al to its current value x.

2. The rate of reproduction of the population is proportion-
al to the amount of available resources which, in turn, is
proportional to the value (k−x):

k − x = k

(
1− x

k

)
. (1)

Note that fight for resources limits the growth of the popula-
tion.

The rate of reproduction is the derivative of x with respect
to t. The equation can be represented in the form

dx
dt = rx

(
1− x

k

)
, (2)

where parameter r>0 represents the coefficient of proportion-
ality characterizing the rate of population growth. We will
consider different values of r. The initial population size is
given by the initial condition: x(0)=x0.

aCorresponding author, email: elena.kozmina@gmail.com
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Solution of equation. Note that the functions x=0 and
x=k for all t are solutions of this equation, so we solve the
equation for x∈(0;k). Making the substitutions

y = x

k
, x = ky,

dx
dt = k

dy
dt , (3)

where
y = y(t), y(0) = y0, y0 = x0

k
, (4)

we get the following equations for y∈(0;1):

dy
dt = ry(1− y) (5)

or in differential form:

dy = ry(1− y)dt. (6)

Eq.(6) represents the equation with separable variables. After
separation

dy
y(1− y) = rdt, (y 6= 0, y 6= 1), (7)

we integrate it in timescale from 0 to t:

y∫
y0

dy
y(1− y) =

t∫
0

rdt. (8)

We represent the integrand in the form

y∫
y0

(
1
y
− 1
y − 1

)
dy = rt (9)

and we get (
ln | y | − ln | y − 1 |

)
|yy0

= rt. (10)

According to Newton-Leibniz formula,

ln
∣∣∣∣ y

y − 1

∣∣∣∣− ln
∣∣∣∣ y0

y0 − 1

∣∣∣∣ = rt. (11)

As y∈(0;1), then ∣∣∣∣ y

y − 1

∣∣∣∣ = y

1− y . (12)

Considering this condition and the fact, that the difference of
the logarithms is equal to the logarithm of the fraction, we
get:

ln y(1− y0)
(1− y)y0

= rt,
y(1− y0)
(1− y)y0

= ert, (13)

1− y
y

= 1− y0

y0e
rt ,

1
y
− 1 = 1− y0

y0e
rt , (14)

1
y

= 1− y0 + y0e
rt

y0ert
, (15)

y = y0e
rt

1− y0 + y0ert
. (16)

Consider the behaviour of the solution Eq.(16) at infinity:

Fig. 1. Logistic function presented in Wolfram Alpha style.

lim
t→+∞

y(t) = lim
t→+∞

(
y0e

rt

1 + y0(ert − 1)

)
, (17)

lim
t→+∞

y(t) = lim
t→+∞

(
y0

1
ert

+ y0
(
1− 1

ert

)
)

= y0

y0
= 1.

(18)
Using that substitutes

y = x

k
, y0 = x0

k
(19)

in Eq.(16), we get

x

k
=

x0

k
ert

1− x0

k
+ x0

k
ert

(20)

and, consequently, an exact solution of Eq.(2) is so called lo-
gistic function

x(t) = kx0e
rt

k + x0(ert − 1) , (21)

where x0 represents the initial size of population. For func-
tion x(t) = ky(t), according to Eq.(18),

lim
t→+∞

y(t) = 1, lim
t→+∞

x(t) = k, (22)

here k represents the capacity of the environment, as the
maximum possible size of the population. This solution does
not give periodic solutions or any deviations.

For drawing of the logistic function, comprehensive list of
mathematical software includes Mathcad [11] and Wolfram
[12]. For example, Fig. 1 represents the expression in Wol-
fram style. Fig. 2 represents the plot of logistic function
expressed by Eq.(21).

Discrete analogue of the Verhulst equation. We consid-
er the Verhulst equation

dy
dt = ry(1− y). (23)

Let’s assume the discrete time scale: t=0,1,2, . . . (time
changes discretely). We denote by

y(0) = y0, y(1) = y1, y(2) = y2, . . . . (24)

Generally,

y(t) = yt, y(t+ 1) = yt+1, (25)
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Fig. 2. Graph of logistic function expressed by Eq.(21):
r=2.5; k=1.0; x0=0.2.

where yt represents the population size at year t. Since the
derivative of the function is the limit of the ratio of the func-
tion increment to the argument increment, we can assume
that the derivative is approximately equal to presented ratio:

dy
dt ≈

∆y
∆t . (26)

In our case

∆t = (t+ 1)− t = 1, ∆y = yt+1 − yt. (27)

For Verhulst equation Eq.(23), taking into account the
approximation expressed by Eq.(26), we receive the equation

yt+1 − yt

1 = ryt(1− yt), (28)

yt+1 = (1 + r)yt − ry2
t . (29)

By transforming to another form

yt+1 = (1 + r)yt

(
1− r

1 + r
yt

)
(30)

and after replacement

r

1 + r
yt = xt, yt = 1 + r

r
xt, (31)

as a result, we obtain the new one:

xt+1 = (1 + r)xt(1− xt). (32)

Using r instead of (1+r), we obtain a discrete analogue of the
Verhulst equation:

xt+1 = rxt(1− xt). (33)

We will study the properties of Eq.(33) at different values
of the parameter r. Two-dimensional graphs presented in
Figs. 3-4, 6-11 were prepared using Cobweb software [13].

Let’s consider the construction path of the sequence (xt).
We use two functions y=x and y=rx(1−x) presented in Fig.
3. The vertex of a parabola is a point with coordinates
(0.5;r/4), x=0 and x=1 are zeros of the quadratic function.

First step. We take an arbitrary initial condition x0. We
draw a vertical line to the intersection with the parabola. On
the y-axis we obtain the value x1. Now we use a straight line
y=x, we transfer the value x1 to the x-axis.

Second step. At the point x1, let’s draw a vertical line to
the intersection with the parabola. On the y-axis we obtain
the value x2. Now we use a straight line y=x, we transfer the
value x2 to the x-axis.

Third and following steps. This step will be realized using
the same routine. Fig. 3 represents geometrical view of the
sequence formation: x0, x1, x2, x3, . . . , using the functions
y=x and y=rx(1−x), r=1.78.

If you do not follow the same path twice in the forward and
backward directions, you may limit yourself to a broken line:
a vertical line from the initial value x0 to the intersection with
the parabola, then the horizontal line to the intersection with
the straight line y=x. Let’s keep doing it again and again, the
vertical line to the intersection with the parabola and the ho-
rizontal line to the intersection with the straight line y=x, etc,
as shown in Fig. 4.

Let’s consider the behaviour of the sequence (xt) at
different values of parameter r. For 06r<3, three different
characteristic types of behaviour could be established.

Let’s consider Eq.(33) with parameters r=0.5, r=1.6,
r=2.87 as examples for analysing. In case when r=0.50 (see
Fig. 5), the sequence (xt) converges to zero for any initial
value x0. In case when r=1.60 (see Fig. 6), the sequence (xt)

Fig. 3. Formation of sequence x0, x1, x2, x3, . . . , using
the functions y=x and y=rx(1-x), r=1.78, x0=0.2.

Fig. 4. Schematic representation of the sequence at r=1.78,
x0=0.2 (according to Fig. 3).
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Fig. 5. Sequence (xt) converges to x∗=0
for x0=0.4 at r=0.50.

Fig. 7. Sequence (xt) converges to x∗≈0.65
for x0=0.2 at r=2.87.

Fig. 9. Sequence (xt). Oscillation between two values
x≈0.84 and x≈0.46 at r=3.39.

converges to x∗=0.375 quickly enough for any value x0. In
case when r=2.87 (see Fig. 7), the sequence (xt) converges
to the value x∗≈0.65 quite slowly - not as fast as in case when
r=1.60.

For 36r64, the behaviour of sequence (xt) changes. Let’s
consider r=3.00, r=3.39, r=3.57, r=3.93 as examples for ana-
lysing. When r=3.00 (see Fig. 8), the sequence (xt) ap-
proaches to the point x∗=2/3 very slowly. When r=3.39 (see

Fig. 6. Sequence (xt) converges to x∗=0.375
for x0=0.2 at r=1.60.

Fig. 8. Sequence (xt) behaviour near the point x∗=2/3
at r=3.00.

Fig. 10. Sequence (xt) oscillates in chaotic manner
at r=3.57.

Fig. 9), the sequence (xt) oscillates between two values
x∗≈0.84 and x∗≈0.46.

When r=3.57, convergence and oscillations are absent, and
values of sequence (xt) are distributed in chaotic manner with
several groups of periodic frames - see Fig. 10. With increas-
ing of r up to value 3.93, the same behaviour will be kept,
and number of periodic frames increases - see Fig. 11.
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Fig. 11. Sequence (xt) is distributed chaotic
for any x0 at r=3.93.

3. Attractors. Conditions for stability

Let’s assume the transition of current system from one state
to another. Let the transition be described by the equation

xt+1 = F (xt) = rxt(1− xt) (34)

and the initial conditions of the system are chosen arbitrarily,
then the final behaviour of the system is described by a point
or a set of points.

A point or set of points that attract all nearest points to it is
called an attractor. We will consider three kinds of attractors:

i) a fixed-point attractor;
ii) a limit cycle attractor or a periodic attractor;
iii) chaotic attractor or strange attractor.

According to the kind of attractors, the behaviour of a non-
linear system could be classified into following groups:

a) stable and converging to an equilibrium value;
b) oscillating in a stable limit cycle;
c) chaotic, but bounded;
d) unstable and exploding.

Using the equation Eq.(34) when xt∈[0;1], r must be treat-
ed as a variable parameter. We will consider 06r64, since
when r>4, sequence (xt) tends to −∞. This is an unstable
and unlimited behaviour of the system: see Fig. 12 for se-
quence at r=4.40.

3.1. The fixed point attractor

In mathematics, a fixed point of a function is an element of
the function’s domain that is mapped to itself by the func-
tion. Accordingly, x∗ is a fixed point of the function F (x) if
F (x∗)=x∗. This means

F 2(x∗) = F (F (x∗)) = F (x∗) = x∗, (35)

Fn(x∗) = x∗, n ∈ N, (36)

an important terminating consideration when recursively
computing F .

Let’s consider the equation

x = F (x). (37)

Fig. 12. Sequence (xt) for any x0 tends to −∞ at r=4.40.

Function F is a contracting map in a closed interval I∈R
if F meets two following conditions.
1. F :I→I , where I is a closed interval. If x∈I , then F (x)∈I .
2. F is the contraction on this interval, if some L∈(0;1)
exists, such that inequality

| F (x)− F (x′) |6 L | x− x′ | (38)

is valid for any x,x′∈I .
Then, according to the principle of contracting map, the

equation x=F (x) has a unique solution x∗∈I , and for any ini-
tial condition x0∈I sequence (xt), t=0,1,2, . . . , determined
by the condition xt+1=F (xt), converges to the value x∗.

Passing to the limit in Eq.(34), we get

x∗ = rx∗(1− x∗). (39)

Therefore, we find the fixed point x∗ by solving equation

x = F (x), (40)

where
F (x) = rx(1− x). (41)

One solution of the equation

x = rx(1− x). (42)

is x=0. Then, if x 6=0, 1=r.(1−x), and another solution is

x = r − 1
r

. (43)

It means that two fixed points will be determined as follows:

x∗1 = 0; x∗2 = r − 1
r

. (44)

If r∈(0;1), then r−1<0 and x∗2 does not belong to the interval
[0;1].

Let’s start to analyse the function F expressed from
Eq.(41):

F (x) = rx− rx2. (45)
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Table 2. Conditions of the stability at fixed point.
| F ′(x)|x=x∗ | <1 locally stable attracting
| F ′(x)|x=x∗ | =1 neutral stable non-attracting non-repulsive
| F ′(x)|x=x∗ | >1 unstable repulsive

According to the condition that the point x∗ is the limit
of the sequence (xt), it is necessary that F meets the sec-
ond condition - see Ineq.(38). For F (x), the first condition
fulfilled at interval [0;1]. This means that if x∈[0;1], then
F (x)∈[0;1]. Second condition will be satisfied, if

| F ′(x)|x=x∗ |< 1 (46)

According to the condition |F ′(x)|x=x∗ | <1, if the tangent
of the slope of the function graph at the point x∗ lies in in-
terval (-1;1), this fixed point is called as locally stable. If
|F ′(x)|x=x∗ |=1, the tangent to the graph of the function co-
incides with the line y=x or y=−x. When |F ′(x)|x=x∗ | =1,
the point x∗ is called as neutral stable: it ceases to be stable
(attract sequence xt), but not repulsive, i.e. is not unstable.
In case if F ′(x)|x=x∗ =0, point x∗ is called as super-stable.

Conditions of the stability at fixed point are presented in
Table 2.

Let’s express the first derivative of F :

F ′(x) = r − 2rx. (47)

We calculate F ′(x) at points x∗1 and x∗2 using Eqs.(44):

F ′(0) = r, (48)

F ′
(r − 1

r

)
= r − 2r · r − 1

r
= r − 2r + 2 = 2− r. (49)

Note that |r|=r for r>0 and

|2− r| = |r − 2|. (50)

Three possible cases for point x∗2 are presented below.
If |r−2| <1, then −1<r−2<1, it means 1<r<3.
If |r−2| =1, then r−2=−1 or r−2=1, it means r=1 or r=3.
If |r−2| >1, then r−2<−1 or r−2>1, it means r<1 or r>3.
Table 3 represents the behaviour of the fixed points. Table 4
represents the dependence of the stability form at the fixed
point on the value of the parameter r.

3.2. Periodic attractor

Table 4 represents the dependence of the stability form at
the certain fixed points. Point x∗2=(r−1)/r becomes unstable,
when r>3. According to that, the behaviour of the point x∗2
changes from attraction to repulsion when r=3. Fig. 9 repre-
sents the plot of two functions, y=x and y=rx(1−x), when
r=3.39. Two crossing points are x∗1=0 and x∗2≈0.7. The se-
quence (xt) oscillates between two other points: x≈0.46 and
x≈0.84.

Instead of one stable point, two new ones appear. It means
that after a certain number of iterations the system begins to
oscillate from one of these points to the other. These points
can be found from equation x= F 2(x).

Periodic attractor for xt+2=F 2(xt). We know that

xt+2 = F (xt+1) = F (F (xt)) = F 2(xt), (51)

where
F (xt) = rxt(1− xt). (52)

According to that,

F 2(xt) = F (F (xt)), (53)

F 2(xt) = F (rxt(1− xt)), (54)

F 2(xt) = r2xt(1− xt)(1− rxt(1− xt)), (55)

F 2(xt) = r2xt(1− xt)(1− rxt + rx2
t ), (56)

F 2(xt) = r2xt(1− rxt − xt + 2rx2
t − rx3

t ). (57)

We denote by x∗(2) the fixed points of equation

x = F 2(x). (58)

To find them, let’s solve equation

x = r2x(1− rx− x+ 2rx2 − rx3). (59)

Similar as in previous case,

x
∗(2)
1 = 0. (60)

Table 3. Behaviour of the fixed points.
Fixed point Locally stable (attracting) Neutral stable Unstable

| F ′(x)|x=x∗ | <1 | F ′(x)|x=x∗ | =1 | F ′(x)|x=x∗ | >1
x∗1=0 06r<1 r=1 r>1
x∗2=(r−1)/r 1<r<3 r=1 or r=3 r<1 or r>3

Table 4. Dependence of the form of stability at a fixed point on the value of the parameter r

r∈(0;1) r=1 r∈(1;3) r=3 r∈(3;4]
x∗1=0 Locally stable Neutral stable Unstable Unstable Unstable
x∗2=(r−1)/r x∗2<0 x∗2=0=x∗1 Locally stable Neutral stable Unstable
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Table 5. Horner’s scheme.
r3 −2r3 r3 + r2 1− r2

+ + +
r − 1

r
↓ r3 − r2 −(r − 1)(r2 + r) r2 − 1

= = =
r3 −r3 − r2 r2 + r 0

We divide both sides of the Eq.(59) by x 6=0.

1 = r2(1− rx− x+ 2rx2 − rx3). (61)

We transform it to the form of cubic equation:

r3x3 − 2r3x2 + r2(r + 1)x+ 1− r2 = 0 (62)

and use the Horner’s scheme. It is known that

x∗2 = r − 1
r

(63)

is the root of Eq.(62). We use Horner’s scheme presented
in Table 5. We can find the remaining two roots solving the
equation

r3x2 − r2(1 + r)x+ r(r + 1) = 0. (64)

As r 6=0, we divide the equation by r2:

rx2 − (1 + r)x+ r + 1
r

= 0. (65)

Let’s calculate the discriminant D:

D = (1 + r)2 − 4(r + 1) = r2 − 2r − 3 (66)

and express the solution in form:

x
∗(2)
3,4 = 1 + r ±

√
r2 − 2r − 3
2r . (67)

Depending on the sign of the discriminant, we need to con-
sider three different cases.

First case. D>0, if r<−1 or r>3. In this case for r>3 we
get two additional solutions:

x
∗(2)
3,4 = 1 + r ±

√
r2 − 2r − 3
2r . (68)

Second case. D=0, if r=−1 or r=3. At r=3, we obtain a
solution:

x
∗(2)
3 = x

∗(2)
4 = 1 + r

2r = 1 + 3
2 · 3 = 2

3 , (69)

which coincides with the solution

x
∗(2)
2 = r − 1

r
= 2

3 . (70)

Third case. D<0, if −1<r<3. There are no additional
solutions.

We obtain the following dependence of the amount of limit
points on the parameter r as presented in Table 6. To check
which of these points are attractive, you need to count the
first derivative of F 2(x) on x at these points and make sure
that the inequality Ineq.(71) is satisfied:∣∣∣∣dF 2(x)

dx

∣∣∣∣
x=x∗

∣∣∣∣ < 1. (71)

Example. For r=3.4 we obtain four fixed points:

x
∗(2)
1 = 0; (72)

x
∗(2)
2 = 3.4− 1

3.4 = 24
34 = 12

17 ≈ 0.706; (73)

x
∗(2)
3,4 = 3.4 + 1±

√
3.42 − 2 · 3.4− 3
2 · 3.4 ; (74)

x
∗(2)
3 = 4.4−

√
1.76

6.8 ≈ 0.452; (75)

x
∗(2)
4 = 4.4 +

√
1.76

6.8 ≈ 0.842. (76)

For F 2(x) (see Eq.(57)), let’s calculate the first derivative
with respect to x:

F 2(x) = r2(x− rx2 − x2 + 2rx3 − rx4); (77)

dF 2(x)
dx = r2(1− 2rx− 2x+ 6rx2 − 4rx3). (78)

Now we will establish the form of stability at fixed points.
The point x∗(2)

1 =0 is an unstable fixed point because

dF 2(x)
dx

∣∣∣∣
x=x

∗(2)
1

= r2 = 3.42 > 1. (79)

Table 6. Dependence of the amount of limit points on the parameter r.
0<r<3, two points r=3, two points r>3, four points

x
∗(2)
1 =0 x

∗(2)
1 =0 x

∗(2)
1 =0

x
∗(2)
2 =

r − 1
r

x
∗(2)
2 =x

∗(2)
3 =x

∗(2)
4 =

2
3 x

∗(2)
2 =

r − 1
r

x
∗(2)
3,4 =

1 + r ±
√

r2 − 2r − 3
2r
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The point x∗(2)
2 ≈0.706 is an unstable fixed point because

dF 2(x)
dx

∣∣∣∣
x=x

∗(2)
2

≈ 3.42(1− 2 · 0.706− 2 · 3.4 · 0.706 + 6 · 3.4 · 0.7062 − 4 · 3.4 · 0.7063) ≈ 1.96 > 1. (80)

The point x∗(2)
3 ≈0.452 is locally stable fixed point because

dF 2(x)
dx

∣∣∣∣
x=x

∗(2)
3

≈ 3.42(1− 2 · 0.452− 2 · 3.4 · 0.452 + 6 · 3.4 · 0.4522 − 4 · 3.4 · 0.4523) ≈ −0.759. (81)

The point x∗(2)
4 ≈0.842 is locally stable fixed point because

dF 2(x)
dx

∣∣∣∣
x=x

∗(2)
4

≈ 3.42(1− 2 · 0.842− 2 · 3.4 · 0.842 + 6 · 3.4 · 0.8422 − 4 · 3.4 · 0.8423) ≈ −0.754. (82)

In case of r=3.4, existence of two stable points is estab-
lished. Fig. 13 represents the plots of functions y=x and
y=F 2(x) (see Eq.(57)). Tangent of the slope of the graph at
points x∗(2)

3 ≈0.452 and x∗(2)
4 ≈0.842 lies in interval (−1;0).

We consider the case, when r=3.51 - see Fig. 14. We
can see that all four crossing points of the functions y=x
and y=F 2(x) are unstable. For the value of the parameter
r=3.51, points x∗(2)

3 and x
∗(2)
4 cease to be stable and both

points generate two new points (each). This phenomenon is
called period doubling. Fig. 15 represents the functions y=x
and y=F 4(x), where four new crossing points x∗(4)

5 , x∗(4)
6 ,

x
∗(4)
7 and x∗(4)

8 are appearing.

When r increases further, four stable points cease to be
stable and generate eight new points. The points at which
the solution doubles are called as bifurcation points. The bi-
furcation process continues, generating 16, 32, 64, . . . stable
points. These points can be found, and their stability is deter-
mined in the same way as in previous case.

When a stable point ceases to be stable, it no longer att-
racts points. However, if the value of the unstable fixed point
is given as the initial condition of the system, then the stable
fixed points do not attract these points, the system remains
at these points. The point x=1 is not fixed, so as F (1)=0,
then the initial condition x0=1 generates the sequence x1=0,
x2=0, x3=0, . . . , xt=0, . . . .

Fig. 13. y=x and y=F 2(x) at r=3.4. Four crossing points,
but only two of them are stable for any x0.

Periodic attractor for xt+4=F 4(xt). According to
Eq.(55) we know that

F 2(xt) = r2xt(1− xt)(1− rxt(1− xt)). (83)

Denote by
B(xt) = 1− rxt(1− xt), (84)

then
F 2(xt) = r2xt(1− xt)B(xt). (85)

Let’s calculate F 3:

F 3(xt) = F (F 2(xt)), (86)

F 3(xt) = rF 2(xt)(1− F 2(xt)), (87)

F 3(xt) = r3xt(1− xt)B(xt)(1− F 2(xt)). (88)

Let’s denote by

C(xt) = (1− xt)(1− F 2(xt)), (89)

then
F 3(xt) = r3xtB(xt)C(xt). (90)

Finally, let’s calculate F 4:

F 4(xt) = F (F 3(xt)), (91)

F 4(xt) = rF 3(xt)(1− F 3(xt)), (92)

F 4(xt) = r4xtB(xt)C(xt)(1− r3xtB(xt)C(xt)), (93)

where F 4(tx) is the sixteenth-order polynomial with respect
to xt. We denote by x∗(4) the fixed points of equation

x = F 4(x). (94)

These solutions could be obtained by means of Mathcad soft-
ware [11] using routine:

F 4(x) = x solve, x→ (95)

There are sixteen solutions of Eq.(94): eight solutions in real
form and eight solutions in complex form as presented in
Table 7. Only real solutions are considered here. Complex
solutions are out of our interest. Among the set of solutions,
x
∗(4)
1 , x∗(4)

2 , x∗(4)
3 , x∗(4)

4 correspond to the x∗(2)
1 , x∗(2)

2 , x∗(2)
3 ,

x
∗(2)
4 respectively as solutions of equation x=F 2(x). Also,

new solutions x∗(4)
5 , x∗(4)

6 , x∗(4)
7 , x∗(4)

8 appear. Fig. 15 re-
presents the plots of functions y=x and y=F 4(x) (Eq.(93)),
where eight crossing points are indicated.
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Table 7. Solutions of Eq.(94) at r=3.51 obtained using Mathcad [11].
Real solutions Corresponds to the fixed point of F 2 Equation Complex solutions

n x
∗(4)
n k

8 0.87734182 1 0.98584709 − 0.00694482 i
4 0.85849118 x

∗(4)
4 →x

∗(2)
4 Eq.(67) 2 0.98584709 + 0.00694482 i

7 0.82501893 3 0.50562789 + 0.17578337 i
2 0.71509972 x

∗(4)
2 →x

∗(2)
2 Eq.(63) 4 0.50562789 − 0.17578337 i

6 0.50671306 5 0.16598412 + 0.07496759 i
3 0.42640911 x

∗(4)
3 →x

∗(2)
3 Eq.(67) 6 0.16598412 − 0.07496759 i

5 0.37772216 7 0.04914291 + 0.02368632 i
1 0 x

∗(4)
1 →x

∗(2)
1 Eq.(60) 8 0.04914291 − 0.02368632 i

3.3. Population behaviour and parameter r

If r∈(0;1), the population will die out, regardless of the initial
conditions.

x∗1 = 0. (96)

If r∈(1;2), the population size will quickly reach the station-
ary value

x∗2 = r − 1
r

, (97)

regardless of the initial conditions.
If r∈(2;3), the population size will also come to the same
stationary value x∗2, but will initially oscillate around it.

Fig. 14. y=x and y=F 2(x) at r=3.51. Four crossing points,
all of them are unstable. Fixed points x

∗(2)
n , n=1,2,3,4, are

indicated by dashed line.

Fig. 15. y=x and y=F 4(x) at r=3.51. Eight crossing points.
Fixed points x

∗(4)
n , n=5,6,7,8, are indicated by dashed line.

If r∈(3;1+
√

6), where 1+
√

6=3.4495≈3.45, the population
will fluctuate infinitely between two values [8],

x
∗(2)
3,4 = 1 + r ±

√
r2 − 2r − 3
2r (98)

and their value does not depend on x0.
If r∈(1+

√
6; 3.54), then the population size will fluctuate be-

tween four values.
If r>3.54, then the population size will fluctuate between 8
values, then 16, 32, etc.

Table 8 represents the dependence of fixed points x∗ on r
for bifurcational diagram. Bifurcation diagram demonstrates
current attractor points for r values - see Fig. 16. The length
of the interval at which the oscillations occur between the
same number of values decreases as r increases. The ra-
tio between the two system interval lengths tends to the first
Feigenbaum constant b=4.669201609…[3]. Such behavior is
a typical example of a period doubling bifurcation cascade.

If r≈3.57, chaotic behaviour begins, and the doubling
cascade ends. Fluctuations are no longer observed. Slight
changes in the initial conditions lead to incomparable differ-

Table 8. Fixed point values for bifurcational diagram.
r x∗2
1.0 0
1.5 0.33
2.0 0.50
2.5 0.60
3.0 0.67
r x

∗(2)
3 x

∗(2)
4

3.0 0.67 0.67
3.1 0.56 0.76
3.2 0.51 0.79
3.3 0.48 0.82
3.4 0.45 0.84
3.45 0.44 0.85
r x

∗(4)
5 x

∗(4)
6 x

∗(4)
7 x

∗(4)
8

3.45 0.439 0.446 0.850 0.852
3.47 0.403 0.479 0.835 0.866
3.49 0.389 0.495 0.829 0.872
3.51 0.378 0.507 0.825 0.877
3.52 0.373 0.512 0.823 0.879
3.54 0.365 0.522 0.820 0.883
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Fig. 16. Dependence of the attractor points x∗

on parameter r. Bifurcation diagram.

ences in the future behaviour of the system in time, which is
the main characteristic of chaotic behaviour.

For r>4, the display values leave the interval [0;1] and di-
verge under any initial conditions.

Conclusions

The discrete analogue of the Verhulst equation is interesting
due to the following circumstance: for sequence Eq.(33) at
different values of the parameter r, a set of different attrac-
tors (fixed point attractor, periodic attractor, chaotic attractor)
could be obtained.

Methodologically, modelling tasks constructed using the
Verhulst equation enable to understand the chaotic behaviour
in real complicated forms of global complexity.

It is necessary to point out that chaotic behaviour of the
model system corresponding to the real system depends on
the method precision. Sensitivity of the model on initial con-
ditions requires the detailed analysis of the stationary as well
as dynamic behaviour.
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