
Gerasimov et al. Artificial Neural Networks. 2. Hardware, software 13

Application of Artificial Neural Networks
for Human Muscle Signal Analysis and Mechanical Equipment Control.

2. Hardware, software, interfaces

Vadim Gerasimov 1 a , Gintaras Jonaitis 2, Vytautas Jonkus 1
1 Machine-to-Machine laboratory, Department of Radiophysics,

Faculty of Physics, University of Vilnius, Saulėtekio al. 9-III, LT2054 Vilnius, Lithuania
2 Laboratory for Medical Rehabilitative and Assistive Technologies, Department of Biomechanics,

Faculty of Mechanics, Vilnius Gediminas Technical University, J. Basanavičiaus str. 28, Vilnius, Lithuania

Received 12 June 2015, accepted 5 August 2015

Abstract. Design of electronic system devoted for processing and recognition of myoelectric signals were
observed. Description of used embedded systems were presented and analyzed.

Citations: Vadim Gerasimov, Gintaras Jonaitis, Vytautas Jonkus. Application of Artificial Neural Net-
works for Human Muscle Signal Analysis and Mechanical Equipment Control. 2. Hardware, software,
interfaces – Innovative Infotechnologies for Science, Business and Education, ISSN 2029-1035 – 1(18)
2015 – Pp. 13-17.

Keywords: Artificial Neural Networks; ANN; recognition of myoelectric signals; electromyogram; linear
regression method; supervised learning; logistic regression; artificial neuron.
Short title: Artificial Neural Networks. 2. Hardware, software

Introduction

Previous publication [1] represents literature overview - how
to create the electronic system devoted for processing and re-
cognition of myoelectric signals. Artificial Neural Networks
(ANN) algorithm was described as an electronic model based
on the neural structure of the human brain.

The hardware needed for scanning and amplification of
myolectic signal was provided by Laboratory for Medical Re-
habilitative and Assistive Technologies at Vilnius Gediminas
Technical University. The hardware construction, assembly
and testing was carried out at Machine to Machine Lab at Vil-
nius University in 2014÷2015. Such signal decoding and in-
terpretation could be used in prostheses technology and other
human-machine interface.

Work objectives could be formulated as follows:
a) to design an interface, suited for myoelectric signal recog-
nition - from human body mounted sensors;
b) to construct a robot-manipulator controllable by afore
mentioned interface.

1. Embedded systems

The embedded system represents a computer system, the pur-
pose of which is precisely determined in a mechanical or an
electronic system. Often it is equipped with an operating sys-

tem (OS), which can be embedded or real-time.
The difference between them in execution manner is that

the former, embedded system buffers its tasks [2], usually it
has its own command interpreter and additional applications
such as the Internet browser can be installed. The latter is
real-time system; the performance of its tasks is carried out
as soon as possible and the tasks are started not from com-
mand line or user interface, but programmed before booting
the system. An embedded system may even be somewhat si-
milar to that of a normal PC system [2]. Some embedded
systems are able to compile the executable code inside with-
out the use of external equipment.

Physically an embedded system can be used for different
purposes - from digital clocks and music players, to indust-
rial objects - traffic lights and production lines. Its user in-
terface can be graphical (GUI) with various controls, console
prompt, or without any control. A system with GUI may be
connected to an external monitor or an embedded miniature
screen. Most frequently used processors are RISC processors
(Reduced Instruction Set Computing). These processors can
be with an integrated memory or with external circuits, suited
for the operational memory access. The number of cores can
be from one to several, e.g. Raspberry Pi B and Pi 2 differ in
core number. The second model may utilize its four cores for
parallel computing software.

An embedded system may also be designed with a periph-

aCorresponding author, email: vadim.gerasimov@ateities.lt

Innovative Infotechnologies for Science, Business and Education, ISSN 2029-1035 – Vol. 1(18) 2015 – Pp. 13-17.

Gerasimov et al. Artificial Neural Networks. 2. Hardware, software 14

Fig. 1. Raspberry Pi B board. According to Ref. [4].

ery: asynchronous transmission line (RS-232, RS-422), syn-
chronous transmission line (I2C, SPI), USB, card reader,
network interface, timers, discreet/digital signal pins, ana-
logue/digital converters. [3]

Embedded system software. The embedded system con-
trol can be implemented in several ways [3].
1. Program loop. It calls subprograms and executes them
sequentially.
2. Interrupt-controlled tasks. A timer or a com-line after
receiving control bytes switches tasks from one to another.
3. Cooperative parallel task distribution. The method is si-
milar to a loop mechanism, but here the tasks are given their
own environment for execution. Thus, when a task execution
is no longer needed, it calls a routine process "PAUSE",
which halts the execution.
4. A multithread operating system. Such OS contains a
kernel, which assists tasks in switching, using priorities or
semaphores. This is called a real-time OS.
5. Micro-kernels. This is a logical step forwards in com-
parison to a real-time OS. The difference is that the kernel
allocates the memory and switches the processor from one
task to another.
6. Monolithic kernels. This is a higher level, when the ker-
nels have complicated control systems. Such a system can
be of a Linux or a Windows basis, therefore they need high
performance hardware (higher than just any ordinary mic-
rocontroller). These embedded systems may have separate
drivers or programme packages.

There are different choices of embedded Linux OS dist-
ributions, intended for different processor architectures, for
example: ARM, AVR32, MIPS, Xtensa. The possibilities of
an OS depend on the distribution. For example, "OpenWRT"
is intended for network switches or routers, "Debian" and
"Ubuntu" based Linux systems more versatile, "Arch" is suit-
ed for a certain, fully programmable task to be executed.

Embedded system board - Raspberry Pi B The reason
why this variant of an embedded system was chosen is its
growing popularity. There were different attempts to use the

basis of this board in constructing radio transmitters, control
cores, or other probe nexuses. The Raspberry Pi B illustra-
tion is shown in Fig. 1.

The board is equipped with integrated circuits, suited for
HDMI, SD card, USB, Ethernet RJ45 or audio connections
control. The board also has a small battery of 26 digital pins
for discreet digital functions or transition lines functionality
of which covers, but is not limited to digital signalling, for
example UART, SPI, IIC. Different equipment can be con-
nected to the board: video cameras, GSM modules, sensors.
The board is designed to utilize the Broadcom manufactured
ARM11 (ARMv6) processor - the BCM2835.

BCM2835 processor. The Broadcom manufactured pro-
cessor - BCM2835 utilizes the ARM11 architecture for the
main processing node (with the ARMv6 instruction set), and
Broadcom VideoCore IV for the graphical processing node
[5]. Its technical specification are presented below. Se-
cond level 128 KB Cache memory module; 700 MHz CPU
clock speed; High Definition and multichannel video proc-
essing supporting the most popular codec’s; Embedded HD-
MI, NTSC, PAL, VGA interfaces; 256 MB SDRAM memo-
ry; DDR NAND Flash memory USB 2.0; SD Card 3.0; Et-
hernet 10/100 Mbps controller; Audio interface; SPI, UART,
I2C; Is able to support Linux OS’es: Raspbian, Pidora, RISC
OS, Arch, FreeBSD, OpenWrt, SlackWare;

Embedded system board - Raspberry Pi 2. The newest
embedded system board was used for comparison and the me-
chanism control implementation (see Fig. 2). The second Pi
model board (like the Pi B model) also has similar integrated
circuits. Among those things it is also equipped with a big-
ger - 40 pin battery and four core processor ARM-Cortex A7
(ARMv7) BCM2836.

BCM2836 processor. The Broadcom’s BCM2836 pro-
cessor uses an ARM A7 architecture for the CPU (with the
ARMv7 instruction set) [7]. Its additional specifications are
(save for the basic BCM2835 ones): 900 MHz clock frequen-
cy; Only HDMI interface; 1 GB LPDDR2 SDRAM memory;
Able to additionally support OS’es like: Android, Ubuntu,
Windows 10.

Fig. 2. Raspberry Pi 2 board. According to Ref. [6].

Innovative Infotechnologies for Science, Business and Education, ISSN 2029-1035 – Vol. 1(18) 2015 – Pp. 13-17.

Gerasimov et al. Artificial Neural Networks. 2. Hardware, software 15

Fig. 3. Raspberry Pi software hierarchy diagram. Adapted
according to Ref. [8].

2. Linux embedded operating system

Many operating systems were released for the Raspberry PI
to fulfil different tasks; the most popular were listed above.
Linux Raspbian OS was used in this work. This system is
created in compliance with the GNU GPL licence. Its distri-
bution stems from its progenitor - Linux Debian [9]. Work
in the operating system may be carried out via the internet
or/and the external monitor.

Writing and compiling of a code is possible on the board
itself, which is very convenient - there is no need for external
computer resources that should assist in constructing the code
before porting it to the board. The compilation is performed
like on a simple personal computer, entering a command in
the prompt terminal: gcc (for C language), g++ (for C++ lan-
guage) with the source code file names, object file names and
an object connection key "-o". The Raspbian system even
supports other Integrated Development Environments (IDE),
offering a better comfort for programming, one of the IDE
examples could be "CodeBlocks".

However, additional libraries, like the <math.h> and other
periphery connecting libraries, like the <wiringPi.h> are
reached using special terminal keys -lm and -lwiringPi. The
peripheral library must be installed separately, and may also
differ for different operating systems. The principle diagram
of the system, its drivers and application software are illus-
trated in different layers in Fig. 3.

3. Parallel programming

To control several nodes at the same time, it is necessary to
write a parallel programme. Parallel task execution on a sys-
tem usually commences independently and asynchronously
(unless it is a distributed calculation) - unlike in a sequential
programme. The operating system, which is installed in an
embedded board, takes care of the parallel programme exe-
cution to not hinder each other. Each separate programme is a
different independent process, which is executed in allocated
time on one of the processor’s cores. However, one process

can be decomposed into separate parallel nodes. Such coor-
dinated operation (avoiding conflicts in data exchange) can
be implemented in several ways [10].

1. Interaction via shared memory. Each processor core
commences thread execution, which in turn belongs to a sin-
gle process. Threads exchange their data via shared memory,
allocated and common for the given process. This is imple-
mented by using either the features of the programming lan-
guage itself (like Java or C#), or using the help of libraries
(such as used in this work - Posix PThreads for C language),
or declaratively (using OpenMP library), either using the em-
bedded compiler tools (like the High Performance Fortran).
Such thread implementation demands additional control in
thread interaction - Mutex’es, semaphores or monitors.

2. Interaction between thread using message passing.
Each processor launches one thread, which exchanges mes-
sages with other threads that are executing on other proces-
sors. Implementation of such interaction is possible using
MPI libraries or language features (like High performance
Fortran, Erlang, Occam). Messages can be passed assyn-
chronically or using a rendezvous method, when the sender
is blocked until its messages are received by another thread.

In this work a library called Posix PThread was utilized
for several reasons. Firstly, it is native in the Linux system.
Secondly, its thread control is moderately explicit, comparing
with an OpenMP, although not as much as in MPI, where one
has to take care of each thread’s message passing [14]. It is
worth mentioning, that launching a few threads, which share
variables, it is necessary to utilize mutexes, semaphores and
monitors.

1. Mutex. An object/structure, which can be locked in
one of the threads, before executing operations with shared
variables, and unlocking them afterwards. In another thread,
where the same mutex is attempted to be locked, the process
halts (optionally) until the wanted mutex is unlocked by the
different occupied thread.

2. Semaphore. A mechanism, working just like a mutex,
which also has a quota for the variables - one can lock it or un-
lock it several times. In such case a variable can be reached by
multiple threads, as many as is permitted by the semaphore.
The set quota for one thread is, in fact, a semaphore’s substi-
tution for a mutex.

3. Monitor. An observer which lets the threads not on-
ly to wait for their turn to execute, but supplies additional
conditions, as well as informs other threads of the changed
statuses.

4. Equipment construction

4.1. Tools for probing myoelectric signal

The probing experiment was carried out using electrodes as
described in Ref. [11]. These cables are protected from me-
chanical stresses and breaking, they are made of an nonsol-

Innovative Infotechnologies for Science, Business and Education, ISSN 2029-1035 – Vol. 1(18) 2015 – Pp. 13-17.

Gerasimov et al. Artificial Neural Networks. 2. Hardware, software 16

Fig. 4. Muscle Sensor v3 model muscle signal amplifier
(manufacturer Advancer Technologies). Adapted according
to Ref. [11].

derable metal and are relatively expensive. Disposable
mounting stickers are prepared with a conductive gel. They
are moulded on the sides of the measured muscle nodes,
and the black ground wire on a bony area near the muscles.
Muscle signal amplification takes place in a special precision
amplifier circuit - see Fig. 3.

The principle of its operation is based on a differential
amplifier AD8226 to strengthen microvolt level signals up to
a couple of hundred millivolts or even 2÷3 V. The amplified
signal is then inverted to the positive voltage, using the inst-
rumental operational amplifier - TL084 model.

After the signal is being smoothed using another circuit
node of TL084 model the signal received in such way is not
just any set of modulated sinusoids, but rather a curve, which
depends on the muscle tension intensity. If need be, the signal
may be amplified or weakened at the second-stage amplifier
before sending it to another node. A major drawback of this
scheme is the implementation of the power supply - it must
be powered by a three-pole power supply or a battery (with
the plus, minus and ground terminals).

Fig. 5. The basic diagram of the system.

4.2. Main board construction

In order to scan a multi-channel signal, it was decided to
construct a main board with a 32-bit ARM Cortex M3 pro-
cessor (LPC1316). It was chosen because it has a number
of pins connected to a 12 bit analogue-to-digital converter,
as well as UART (Universal Asynchronous Receiver Trans-
mitter) interface. The final layout is able to support up to six
amplifier modules - see Fig. 5, left bottom part. It works
as follows: every fifty milliseconds the signal is registered
from the amplifier, converted into digital information and for-
warded through the UART interface to other nodes. Trans-
mission is constant, regardless of receiving node. Receiving
node is described in the theory section - embedded systems
Raspberry Pi B and Raspberry Pi 2.

4.3 Assistive mechanical robot

For the research of mechanism control a robot-manipulator
E.A.R.L (Ergonomic Assistive Robotic Limb) was created -
see Fig. 6. Its parts were manufactured using a laboratory
milling machine. The vertical axis rotates due to belt trans-
mission. Shoulder and elbow joints are driven using a worm-
gear. These gear systems are powered using stepper motors,
while the wrist actuation is handled by servo motors.

To control and drive the stepper and servo motors printed
circuit boards were constructed. The operating mode of the
above mentioned boards is selected using the UART inter-
face. The operation commands are sent from the embedded
system board to the stepper driver boards.

Fig. 6. Prototype of robot manipulator E.A.R.L. which was
used to test the neural network control performance.

Innovative Infotechnologies for Science, Business and Education, ISSN 2029-1035 – Vol. 1(18) 2015 – Pp. 13-17.

Gerasimov et al. Artificial Neural Networks. 2. Hardware, software 17

Fig. 7. Complete robotised system including: 1) robot ma-
nipulator; 2) remote control glove; 3) myoelectric probes; 4)
amplifier; 5) signal converter; 6) Raspberry Pi 2 embedded
system; 7) motor drive board.

Additional control is carried out with an ergonomic glove
fitted with buttons and if pushed they signal the system.

Combining all the components into a single system, the
functioning machine was developed as a hardware-software
sollution (Fig. 5) E.A.R.L.

This system consists of muscle signal probes - stickers and
the cables. They are connected to the muscle signal ampli-

fier. The amplifier enhances about 50 thousand times, inverts
and smothens the signal and feeds it into the distribution unit
(main board). The distribution unit sends the data every 50
milliseconds using a command "ADC#XXXX", where # is
the channel number and XXXX represents the value from
zero to 4095.

The embedded system, using the UART interface, receives
and decodes incoming messages using one of the software
threads, and depending on the selected programme mode,
makes decisions. The remote control unit communicates di-
rectly with the embedded system. Its desicions are displayed
either on the screen (in case of muscle signal decryption mo-
de) or are sent to the motor control board (in case of robot
control mode). The motor control board using a special pro-
cessor and the UART interface accepts commands from the
embedded system and using special driving circuits controls
the voltage applied on the stepper motor coils, or the servo
motor feedback system.

Fig. 7 represents complete robotised system including ro-
bot manipulator, remote control glove and the described elec-
tronic equipment.

Conclusions
1. The designed robotic mechanism E.A.R.L. (Ergonomic

Assistive Robotic Limb) was succesfully created using
several interfaces, suited for myoelectric signal recogni-
tion.

2. Package of monitoring program was created, adjusted and
adapted for presented interfaces.

References
1. Vadim Gerasimov, Gintaras Jonaitis, Vytautas Jonkus. Application of Artificial Neural Networks for Human Muscle Signal Analysis

and Mechanical Equipment Control. 1. Problem overview – Innovative Infotechnologies for Science, Business and Education, ISSN
2029-1035 – 1(18) 2015 – Pp. 7-12.

2. Michael Barr, Anthony Massa. Programming Embedded Systems, 2nd Edition with C and GNU Development Tools. – O’Reilly
Media, 2006 – P 336.

3. <http://users.ece.cmu.edu/k̃oopman/iccd96/iccd96.html>, accessed 2015.01.17.
4. <http://elinux.org/RPi_Hardware>, accessed 2015.01.17.
5. <https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf>, accessed 2015.05.16.
6. <http://www.element14.com/community/community/raspberry-pi/raspberrypi2 ?ICID=rpimain-feature-products>, accessed 2015.05.16.
7. <http://www.adafruit.com/pdfs/raspberrypi2modelb.pdf>, accessed 2015.05.16.
8. <https://www.raspberrypi.org/wp-content/uploads/2012/01/RaspberryArch.jpg>, accessed 2015.05.16.
9. <https://www.raspbian.org>
10. Peter S. Pacheco. An Introduction to Parallel Programming. – Publ. Morgan Kaufmann, 2011 – p. 370.
11. <http://www.advancertechnologies.com/p/muscle-sensor-v3.html>, accessed 2015.01.17.

Innovative Infotechnologies for Science, Business and Education, ISSN 2029-1035 – Vol. 1(18) 2015 – Pp. 13-17.

