
Kozmina. On the polynomials. 13

On the polynomials of optimal shape
generating maximum number of period annuli  

 
Yelena Kozmina a

Department of Natural Sciences and Computer Technologies
Information Systems Management Institute

Ludzas iela 91, LV-1003, Riga, Latvia  
 

Received 1 June 2012, accepted 11 November 2012  
 

Abstract. The nonlinear differential equation x
′′+g(x) = 0 is being considered, where g(x) is a polynomial

that allows the equation to have multiple period annuli. It is shown how the respective optimal polynomials
can be constructed in case, when a primitive of the function g(x) is a polynomial of an arbitrary selected
even degree.
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Introduction

Lets consider the second order nonlinear autonomous
differential equation

x
′′

+ g(x) = 0 (1)

where g(x) is a polynomial of odd degree with simple ze-
ros only and the highest degree of polynomial with a nega-
tive coefficient. Zero z is called simple if g(z) = 0 and
g′(z) 6= 0. In these points function G(x) which is a primi-
tive of the function g(x) has an alternate local maxima and
minima points.

G(x) =
x∫

0

g(s)ds (2)

Note that a critical point is a center, if it has a punctured
neighborhood covered with nontrivial cycles. Period annu-
li looks like a domain filled with closed trajectories. Every
connected region on a phase plane covered with nontrivial
concentric closed curves is called a period annulus. We will
call a period annulus associated with a central region by a
trivial period annulus.

Periodic trajectories of a trivial period annulus encircle
exactly one critical point of the type center. Period annuli
enclosing several (more than one) critical points are called
nontrivial period annuli. According to previous notes in Ref.
[1-3], we are interested mostly in presence of nontrivial pe-
riod annuli.

1. Methods

Definition 1. Points xi and xj of local maxima of the function
G(x) are called non-neighbouring, if there exists at least one
point of local maxima of the function G(x) in the interval
(xi, xj).

Definition 2. Two non-neighboring points of maxima xi

and xj of G(x) will be called a regular pair if G(x) <

min(G(xi), G(xj)) at any other point of maximum lying in
the interval (xi, xj).

The theorem of existence of periodic annuli is formulated
according to Ref. [1]. If g(x) is a polynomial of odd degree
with simple zeros only, G(x) is a primitive of the function
g(x), two points of maxima xi and xj of the function G(x)
form a regular pair, then the equation x

′′ + g(x) = 0 has a
nontrivial period annulus associated with the pair xi, xj .

The theorem of the maximum number of periodic annuli is
formulated according to Ref. [2]. If g(x) is a polynomial of
odd degree with simple zeros only and the highest degree of
polynomial with a negative coefficient,G(x) is a primitive of
the function g(x), n is the number of points of local maxima
of the function G(x), then the maximal possible number of
regular pairs for G(x) is equal to (n− 2).

Proof. Let n = 3. The following G(x) combinations are
possible at three points of maxima as presented in Fig. 1.

A regular pair exists in the unique case presented in Fig.
1b, therefore, the maximal number of regular pairs is equal
to one.
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Fig. 1. G(x) combinations at three maxima points.
a) G(x1) ≥ G(x2) ≥ G(x3), b) G(x2) < G(x1), G(x2) < G(x3),
c) G(x1) ≤ G(x2) ≤ G(x3), d) G(x2) ≥ G(x1), G(x2) ≥ G(x3).

Suppose that for any sequence of k consecutive points of maxima of G(x)(k ≥ 3) the maximal number of regular pairs is
equal to (k − 2). Without the loss of generality let us add to the right side the additional maximum point of the function G(x).
We get a sequence of (k + 1) consecutive points of maximum of the function G(x) : x1, x2, . . . , xk, xk+1, when x1 < x2 <

. . . < xk < xk+1.
Let us prove that the maximal number of regular pairs is equal to (k − 1).
Let xp, when 2 ≤ p ≤ k, be one of the maxima points of G(x) in which the function G(x) has the largest value. Now cut the

segment [x1, xk+1] into two parts: [x1, xp] and [xp, xk+1].
Number of the points of maxima on the segment [x1, xp] is equal to p and the maximal possible number of regular pairs is

equal to (p− 2). Number of the points of maxima on the segment [xp, xk+1] is equal to

k + 1− (p− 1) = k − p+ 2 ≤ k (3)

and the maximal possible number of regular pairs is equal to (k − p). Number of the maxima points on the segment [x1, xk+1]
is equal to (k + 1). Maximal possible number of regular pairs is equal to

(p− 2) + (k − p) + 1 = k − 1, if G(xp) < G(x1) and G(xp) < G(xk+1),
(see Fig. 2)

and

(p− 2) + (k − p) = k − 2, if G(xp) ≥ G(x1) or G(xp) ≥ G(xk+1), and
the additional regular pair does not appear. In a particular case (see Fig. 3) G(x1) > G(xk) and

G(x2) < G(x3) < ... < G(xk) < G(xk+1), (4)

the following regular pairs emerge, namely x1 and x3, x1 and x4, ... , x1 and xk, x1 and xk+1, in total (k − 1) pairs.

Fig. 2. Case of G(xp) < G(x1) and G(xp) < G(xk+1), Fig. 3. Particular case with exactly (k − 1) regular pairs.
where one additional regular pair appears.
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Fig. 4. Polynomial P2n(x) in cases, when n = 3 (left), n = 4 (center), n = 5 (right).

Proposition 1. Graph of the polynomial

P2n(x) = −x(x− 1)(x− 2) . . . (x− (2n− 1)) (5)

is symmetrical relative to the straight line x = n− 1
2 (see Fig. 4).

Proof. Lets provide the parallel shift of coordinate system

{
x−

(
n− 1

2

)
= x

′
,

y = y
′

(6)

to the point O
′(n− 1

2 , 0). In that case the polynomial P2n(x) is transformed to new one as follows:

P2n(x′) = −
(
x′2 −

(
1
2

)2
)(

x′2 −
(

3
2

)2
)
. . .

(
x′2 −

(
n− 1

2

)2
)
. (7)

P2n(x′) is an even function, i.e., a graph is symmetrical to axis O
′
Y ′.

Proposition 2. The polynomial
P2n(x) = −x(x− 1)(x− 2) . . . (x− (2n− 1)) (8)

has n maxima points x1, x2, . . . xn, where xi ∈ (2i− 2; 2i− 1), i = 1, 2, . . . , n, and

P2n(x1) = P2n(xn) > P2n(x2) = P2n(xn−1) > . . . > P2n(xn
2

) = P2n(x (n+2)
2

), (9)

if n is even,
P2n(x1) = P2n(xn) > P2n(x2) = P2n(xn−1) > . . . > P2n(x (n+1)

2
), (10)

if n is odd.

2. Proof for P2n(x) where n = 2.

Proof. Let us consider polynomial P2n(x) where n = 2 and polinomial P
′

4(x) as the derivative of P4(x):

P4(x) = −x(x− 1)(x− 2)(x− 3), (11)

P
′

4(x) = −(4x3 − 18x2 + 22x− 6) = −2(2x− 3)(x2 − 3x+ 1). (12)

The polynomial P4(x) has two maxima points x1 and x2 related using expression: P4(x1) = P4(x2):

x1 = (3−
√

5)
2 ∈ (0; 1); x2 = (3 +

√
5)

2 ∈ (2; 3), (13)
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Fig. 5. P4(x) = −x(x − 1)(x − 2)(x − 3) at bottom and Fig. 6. Polynomial P6(x) = P4(x) · Q2(x)
Q2(x) = (x − 4)(x − 5) at top. P6(x) = −x(x − 1)(x − 2)(x − 3)(x − 4)(x − 5)

Polynomial P6(x) (see Fig. 5, Fig. 6) will be formed using the polynomial P4(x) and quadratic trinomial Q2(x):

Q2(x) = (x− 4)(x− 5) : (14)

P6(x) = −x(x− 1)(x− 2)(x− 3)(x− 4)(x− 5) = P4(x) ·Q2(x). (15)

Function P6(x) has two maxima points on segment [0; 3] belonging to the different intervals: x
′

1 ∈ (0; 1) and x
′

2 ∈ (2; 3), and
derivatives of P6(x) at fixed points could be expressed as follow:

P6(x
′

1) = max
x∈(0;1)

P6(x) ≥ P6(x1) = P4(x1) ·Q2(x1) > P4(x1) ·Q2(1) = 12 · P4(x1), (16)

P6(x
′

2) = P4(x
′

2) ·Q2(x
′

2) ≤ max
x∈(2;3)

P4(x) ·Q2(x
′

2) < P4(x2) ·Q2(2) = 6 · P4(x2). (17)

We obtain
P6(x

′

1) > 12 · P4(x1) > 6 · P4(x2) > P6(x
′

2) (18)

On every segment between zeros of the polynomial P6(x) this polynomial has only one extremum point, because P
′

6(x) is a
polynomial of the 5th degree, and can not have more than 5 zeros.

By symmetry of the graph of the polynomial P6(x) with respect to the line = 5
2 , the second point of maxima is x

′

2 = 5
2 , the

third point of maxima is x
′

3 ∈ (4; 5), and P6(x′

3) = P6(x′

1).

3. Proof for P2n(x) where n = 3.

Let us consider polynomial P2n(x) where n = 3. Polynomial P8(x) (see Fig. 7, Fig. 8) will be formed using the polynomial
P6(x) and quadratic trinomial Q2(x):

P6(x) = −x(x− 1)(x− 2)(x− 3)(x− 4)(x− 5), (19)

Q2(x) = (x− 6)(x− 7), (20)

P8(x) = −x(x− 1)(x− 2)(x− 3)(x− 4)(x− 5)(x− 6)(x− 7) = P6(x) ·Q2(x). (21)

On segment [0; 3, 5] the function P8(x) has two points of maxima x
′′

1 ∈ (0; 1) and x
′′

2 ∈ (2; 3), and

P8(x
′′

1 ) = max
x∈(0;1)

P8(x) ≥ P8(x
′

1) = P6(x
′

1) ·Q2(x
′

1) > P6(x
′

1) ·Q2(1) = 30 · P6(x
′

1), (22)

P8(x
′′

2 ) = P6(x
′′

2 ) ·Q2(x
′′

2 ) ≤ max
x∈(2;3)

P6(x) ·Q2(x
′′

2 ) < P6(x
′

2) ·Q2(2) = 20 · P6(x
′

2). (23)
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Fig. 7. Polynomial P6(x) at bottom Fig. 8. Polynomial P8(x) = P6(x) · Q2(x)
P6(x) = −x(x − 1)(x − 2)(x − 3)(x − 4)(x − 5) P8(x) = −x(x−1)(x−2)(x−3)(x−4)(x−5)(x−6)(x−7)
and quadratic trinomial Q2(x) = (x − 6)(x − 7) at top.

We obtain
P8(x

′′

1 ) > 30 · P6(x
′

1) > 20 · P6(x
′

2) > P8(x
′′

2 ). (24)

Polynomial P8(x) has two more points of maxima: x
′′

3 ∈ (4; 5) and x
′′

4 ∈ (6; 7).
By symmetry of the graph of the polynomial with respect to the line x = 7

2 , following expressions take place:

P8(x
′′

3 ) = P8(x
′′

2 ) (25)

P8(x
′′

4 ) = P8(x
′′

1 ) (26)

.

4. Proof for P2n(x) where n = k + 1.

Suppose that the proposition 2 is true, if n = k, i.e., P2k(x) has k points of maxima x1, x2, . . . xk, where xi ∈ (2i−2; 2i−1), i =
1, 2, . . . , k, and

P2k(x1) = P2k(xk) > P2k(x2) = P2k(xk−1) > . . . > P2k(x k
2
) = P2k(x (k+2)

2
), (27)

if k is even, and
P2k(x1) = P2k(xk) > P2k(x2) = P2k(xk−1) > . . . > P2k(x (k+1)

2
), (28)

if k is odd.
Let us show now that the proposition 2 is true if n = k + 1, i.e., for the points of maxima x

′

1, x
′

2, . . . , x
′

k+1 of the polynomial

P2(k+1)(x) = −x(x− 1)(x− 2) . . . (x− (2k + 1)), (29)

where x
′

i ∈ (2i− 2; 2i− 1), i = 1, 2, . . . , k + 1, the following relation takes place:

P2(k+1)(x
′

1) = P2(k+1)(x
′

k+1) > P2(k+1)(x
′

2) = P2(k+1)(x
′

k) > . . . > P2(k+1)(x
′
(k+2)

2
), (30)

if k is even, and

P2(k+1)(x
′

1) = P2(k+1)(x
′

k+1) > P2(k+1)(x
′

2) = P2(k+1)(x
′

k) > . . . > P2(k+1)(x
′
(k+2)

2
) = P2(k+1)(x

′
(k+3)

2
), (31)

if k is odd.
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Let us represent the polynomial P2(k+1)(x) as a complex polynomial:

P2(k+1)(x) = P2k(x) ·Q2(x), (32)

Q2(x) = (x− 2k)(x− (2k + 1)) (33)

where Q2(x) on the segment (−∞; 2k + 1
2 ) is a monotonically decreasing function. Now compare values of the polynomial

P2(k+1)(x) in the neighbouring points of maxima x
′

i ∈ (2i− 2; 2i− 1) and x
′

i+1 ∈ (2i; 2i+ 1) (i = 1, 2, . . . , k
2, if k is even, and

i = 1, 2, . . . , (k−1)
2, if k is odd):

P2(k+1)(x
′

i) = max
x∈(2i−2;2i−1)

P2(k+1)(x) ≥ P2(k+1)(xi) = P2k(xi) ·Q2(xi) > P2k(xi) ·Q2(2i− 1), (34)

P2(k+1)(x
′

i+1) = P2k(x
′

i+1) ·Q2(x
′

i+1) ≤ max
x∈(2i;2i+1)

P2k(x) ·Q2(x
′

i+1) = P2k(xi+1) ·Q2(x
′

i+1) < P2k(xi+1) ·Q2(2i). (35)

We obtain
P2(k+1)(x

′

i) > P2k(xi) ·Q2(2i− 1) > P2k(xi+1) ·Q2(2i) ≥ P2(k+1)(x
′

i+1), (36)

i.e.,
P2(k+1)(x

′

i) > P2(k+1)(x
′

i+1), (37)

where i = 1, 2, . . . , k
2, if k is even, and i = 1, 2, . . . , (k−1)

2, if k is odd.
By symmetry of the graph of the function with respect to the line x = k + 1

2, in other points of maxima of the polynomial
P2(k+1)(x) we obtain necessary correlation.

We would like to get now a polynomial Q2n(x) with optimal distribution of maxima.
Let us change one of zeros of the polynomial P2n(x) to sufficiently small ε:

Q2n(x) = −x(x− 1)(x− 2) . . . (x− (n− 1 + (−1)nε)) . . . (x− (2n− 1)). (38)

Sign of the difference

Q2n(x)− P2n(x) = (−1)nεx(x− 1)(x− 2) . . . (x− (n− 2))(x− n) . . . (x− (2n− 1)) (39)

on the segments between zeros 0, 1, 2, . . . , n − 2, n, . . . , 2n − 1 of this difference will alternate increasing the value of the
polynomial Q2n(x) comparing to the values of the polynomial P2n(x) in points of maxima on one side of the line x = n − 1

2 ,
and decreasing on the other.

Proposition 3.
The polynomial

Q2n(x) = −x(x− 1)(x− 2) . . . (x− (n− 1 + (−1)nε)) . . . (x− (2n− 1)) (40)

an arbitrary selected even degree 2n using condition n ≥ 3, where ε > 0 is sufficiently small, has n points of maxima
x

′

1, x
′

2, . . . , x
′

n,x
′

i ∈ (2i− 2; 2i− 1), i = 1, 2, . . . , n, and

Q2n(x
′

1) > Q2n(x
′

n) > Q2n(x
′

2) > Q2n(x
′

n−1) > . . . > Q2n(x
′

n/2) > Q2n(x
′

(n+2)/2), (41)

if n is even, and respectively

Q2n(x
′

1) > Q2n(x
′

n) > Q2n(x
′

2) > Q2n(x
′

n−1) > . . . > Q2n(x
′

(n+1)/2), (42)

if n is odd.

Conclusion

We consider the acquired polynomial Q2n(x) as a function G(x) =
∫ x

0 g(s)ds, which is a primitive of the function g(x). There
exist exactly (n− 2) regular pairs of maxima points of the function G(x), and, consequently, (n− 2) nontrivial period annuli of
differential equation x

′′ + g(x) = 0.
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