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Introduction

Classification and ordering of selected sets constructed using
multiple objects represent an unresolved problem in ma-
ny areas of urban as well as scientific activity. Power law
distributions represent statistical behaviour of classification
in order to reselect the frequently used items from random
occurred ones. Human speech belongs to one of irregu-
lar item distribution, and automatized language recognition
(OCR, handwriting recognition, spelling correction etc) as
well as artificial intelligence (augmentative communication,
chat-boots etc) are based on statistical properties of language.

As a subdiscipline of general linguistics, the quantita-
tive linguistics (or so-called mathematical linguistics) studies
the quantitative aspects of structure typical for natural lan-
guage. Static and dynamical approaches (present status and
time-domain) allows understanding the changes in language
morphology and undercrossing of several languages in cer-
tain field. It is obviously that statistical mathematical me-
thods formulates the models, which are applicable by ana-
lysing the natural languages. Formulation of language laws
allows to extrapolate the generalities of language into affinity
group. Specific terms are used in such type modeling.

Linguistic object represents any text in any language where
morphological, semantic and lexical rules were used in order
to represent the certain idea.

Item represents an linguistic unit (smallest linguistic ob-
ject). According to the most popular approach, item corre-
sponds to single word (including all word forms). Another
approaches allow to use two-words, three-words, also letters,

syllables, morphological or semantic constructions etc. Ta-
king more generally, any combination of lexemes (so called
“base” words or dictionary-entries) extracted from regular or
random texts according to certain rule could be treated as an
item. For random text generation, the set of any letters of
finite amount also could be treated as an item.

Token as the semantic element of programming or natural
language could represent an linguistic unit and could be treat-
ed as an item.

Corpus represents structured set of texts (usually electron-
ically stored, large amount) devoted for statistical analysis.

Our previous publication [1] was devoted to the overview
the applications of Zipf and related scaling laws in econom-
ics. This work is aimed to the overview it in linguistics. We
have selected about seventy typical references (up to 2011)
including several of historic importance. Three approaches
of the mentioned problem are presented below.

1. Mathematical formulation of task in the framework of
one- and multi-dimensional distribution; description of
the object and related laws in quantitative linguistics;
description of models for word frequency distributions.

2. Zipfian applications for natural (western and eastern) as
well as artificial languages (programming languages and
random texts); principles of formation dictionaries.

3. Artificial intelligence systems based on ranked item fre-
quency; cognitive mechanisms including search; lan-
guage evolution as an informational process.

Quantitative linguistics is empirically based on the results
of language statistics through statistics of any linguistic ob-
ject.
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1. Mathematical formulation of task

Zip law. George Zipf found the power-law-like word fre-
quency dependence on word rank. The most frequent word
appears twice as often as next most popular word, three times
as often as 3rd most popular, and so on. So called zipfian dis-
tribution relates frequency f(r) of item occurrence in finite
corpus to item rank r(w) according to Eq. (1).

f(r) = α

rγ
(1)

log f(r) = α− γ. log r (2)

In particular case for Zipf distribution, exponent γ ≈1. In a
logarithmic scale, this dependence represents a straight line,
graphical charts are presenten in previous Ref. [1].

For finite corpus of size N , the Zipf coefficient Klan

depending on language could be established according to
Eq.(3):

Klan = N
r(w)
c(w) (3)

where c(w) - number of selected ranked items w. The simp-
lest case of Zipf law is the famous f−1 hyperbolic function.
For detailed textbook, see very large study [2] prepared by
Saichev et al.

Li in review article [3] devoted to the 100th anniversary of
the birth of George Zipf accented the ubiquity of Zipf law.
All questions are not answered yet.

1. Is there a rigorous test in fitting real data to Zipf law?
2. In how many forms does Zipf law appear?
3. In which fields are the data sets claiming to exhibit Zipf

law?
Heaps law and Herdan law. Harold Heaps discovered

distribution of vocabulary size on text length [4]. Number
of distinct items (words) V (n) in a part of text containing
n items is exponentially proportional to n - so called Heaps
law, see Eq.(4).

V (n) = α.nγ (4)

With English text corpora, typically α∈[10÷100], and
γ∈[0.4÷0.6]. Heaps law is asymptotically equivalent to Zipf
law concerning the frequencies of individual items (words)
within a text.

Gustav Herdan [5] proposed following formulation: the lo-
garithm of vocabulary size divided by the logarithm of text
size is a constant smaller than 1 – so called Herdan law, see
Eq.(5). It is evident that Eq.(5) corresponds to Eq.(4) when
α=1.

γ = log V (n)
logn (5)

Task of item classification could be treated as a signifi-
cant part in signalling theory, which examines communica-
tion types between individuals. The nature of the Zipf and
Heaps laws is not yet clear. According to statements in sig-
nalling theory, the language items distributions via power law
expressions seem to be specific for natural as well as artificial

languages only, otherwise, another signal systems, based on-
demand assumption, show stochastic behaviour only [6].

Alfred Lotka states that the number of authors making n
contributions is proportional to the n−2. Lotka law describes
the frequency of publication V (n) by authors n in any given
field. It could be treated as one of a variety of Zipf law (γ=2).

V (n) = α

n2 (6)

Egghe [7] investigates Herdan law and Heaps law from a
purely mathematical and informetric point of view. Depen-
dencies according to Lotka law (exponent γ=2) and Zipf law
(exponent γ=1) must be treated as expression of boundary
conditions by analysing text in linguistics (citations and re-
gular text, respectively).

Bernhardsson et al. [8] analyse text-length dependence of
the power-law index of a single book. They have been found
that exponent value decreases from 2 to 1 with increasing
text length according to extended Heaps law and Zipf law
respectively. Authors proposed an idea that the systematic
text-length dependence can be described by a meta book con-
cept, which is an abstract representation reflecting the word-
frequency structure of a text.

Analysing on any text usually starts from two operations.
1. Calculating of item frequency distribution on rank. In

many cases, Zipf or Lotka dependences are expected,
for example, see Fig. 1. Exponent γ∈[1÷2].

2. Calculating of vocabulary size distribution on text size.
As usually, Heaps dependence expected, for example,
see Fig. 2.

Fig. 3 represents the plot (in log-log coordinates) of rank-
ed word frequency. English corpus was obtained from Wiki-
pedia (data until November 27, 2006) [9]. As expected for
English language, the most popular words are “the”(r=1),
“of”(r=2), “and”(r=3), also “a”, “in”, “be”, “to”, “that” and
so on. Actually, Zipf law represents an harmonic series r−1,
which describes the real word distribution quite well in first
assumption only.

Initial part of dependence in interval AB is claimed as non-
zipfian dependence (γ≈0.5). Part AB represents dependence
of the words which are morphologically or semantically re-
quested (according to the language construction).

Middle part of dependence in interval BC represents Zipf
law (γ=1).

Part CD represents dependencies of rarely used words, so
called citation words according to Lotka law (exponent γ=2).
Also long tail dependence in interval CE represents Zipf-
Mandelbrot law (γ≥2).

These lines correspond to three distinct parameterizations
of the Zipf-Mandelbrot distribution.

Models for Word Frequency Distributions. It has taken
more than 100 years to discuss the item frequency occur-
rence in different sciences and linguistic areas such as nat-
ural sciences (particle distribution, gene sequence, and earth-
quakes), economics (market parameters, growth prognosis),
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Fig. 1. Zipf law: simulated word fre-
quency distribution on word rank according
to Eq.(1), α=1, γ=1.

Fig. 2. Heaps law: simulated vocabulary
size distribution on text size according to
Eq.(4), α=50, γ=0.5.

Fig. 3. Ranked word frequency depend-
ence (in log-log scale). English corpus from
Wikipedia, Nov 27, 2006. Adapted accord-
ing to Ref. [9].

urbanistics (the dynamical sizes of cities) etc. Linguistics re-
presents a specific field area in information exchange where
chaotic and semi-chaotic sequences – items are encompassed
into general power laws. Zipf law uncovers the relationship
between word frequency f(r) and its rank r – see Eq. (1).

Zipf [10] states that the Principle of Least Effort as the pri-
mary principle governs our entire individual and collective
behaviour of all sorts, including the behaviour of our lan-
guage and preconceptions. Kirby [11] analyses validity of
Zipfs law using different type of examples. Simulation of
organisational behaviour gives the zipfian dependence.

Kosmidis et al. [12] probed to formalize the language sys-
tem using a simple expression for the Hamiltonian, which is
directly implied by the Zipf law. Several language properties
such as universality of the Zipf exponent, the vocabulary size
of children, the reduced communication abilities of people
suffering from schizophrenia could be able to explain.

Historically most important Zipf law according to Eq.(1)
and several derived/related laws such as Paretto distribu-
tion according to Eq.(7) can be applied for strong selection,
sorting, prediction, recognition of linguistic items of different
languages.

f(r) =
[

r

rmin

]−γ
(7)

Egghe [13] analyses graphically the relation between the
fraction of the items and the fraction of the sources produc-
ing these items. Paretto distribution or so called 80/20-rule
by fitting Lorenz curve is evident. Egghe claims that the share
of items as a function of the corresponding share of sources
increases with increasing size of the system.

Newman [14] reviews some of the empirical evidence for
the existence of power-law forms and the theories proposed
to explain them. The origin of power-law behaviour has been
a topic of debate for more than a century. Darooneh [15] ana-
lyses the statistics of ranked words in natural languages using
the rank-frequency plot of these words. In that case, model
of fractional brownian motion was used in order to improve
the power law prediction. Verification of a finite size scal-
ing ansatz was done. This routine allows finding the correct
relation between the Zipf exponent and the Hurst exponent

characterizing the fractional brownian motion.
Montemurro [16] proposes the revisited Zipf–Mandelbrot

law in the context of linguistics - see Fig. 4. Its well known
that Zipf–Mandelbrot law describes the statistical depend-
ence of the items from certain corpus only. Significant devia-
tions become statistically relevant as larger corpora are con-
sidered.

f(r) = α

(1 + βr)γ (8)

f(r) = α

β + rγ
(9)

By varying the scale parameter β, it is possible to fit the word
frequency dependence in part AB - see Fig.3.

Lognormal law. Fig. 5 represents the probability densi-
ty function of a log-normal distribution according to Eq.(10).
Mentioned non-symmetrical multi-dimensional distribution
contains location parameter µ and scale parameter σ.

fX(x, µ, σ) = 1
xσ
√

2π
exp

[
− (ln x− µ)2

2σ2

]
(10)

Weibul distribution. Fig. 6 represents the probability
density function of a Weibull random variable which is use-
ful function in order to simulate particle size distribution.
Eq.(11) represent expression for (r≤0), where positive shape
and scale parameters take place: k>0, λ>0.

Fig. 4. Simulated word frequency dependence on rank.
Zipf distribution according to Eq.(1), black;
Zipf-Mandelbrot distribution according to Eq.(8), β=0.5, red.
For both curves, α=0.1, γ=1.
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Fig. 5. Log-normal distribution according to Eq.(10), when
µ=0. Scale parameter σ=1, black; σ=0.5, red; σ=0.2, blue.

f(r, λ, k) = k

λ

(
r

λ

)k−1
exp

[
−
(
r

λ

)k]
(11)

Baayen [17] describes three models for word frequency
distributions: generalized inverse Gauss-Poisson law; log-
normal law according to Eq.(10) and Zipf law according to
Eq.(1). Goodness of fit and rationale are commented. It was
concluded that no model could vouch the exclusive validity.
The role of morphology in shaping word frequency distri-
butions is actual because the vocabulary richness in literary
studies correlates to the morphological productivity in lin-
guistics.

Traditionally, zipfian dependencies are devoted for ranked
distributions in linguistics, bet otherwise, full statistical ana-
lysis such as ANOVA allows analysing the distributions of
random and quasi-random items. Limpert et al. [18] ana-
lyse applicability of log-normal distribution in several areas
of science.

Mitzenmacher [19-20] represent quite brief history of app-
lications related to the several recently proposed models such
as lognormal and power law distributions in several areas in-
cluding validation of models and control of systems. Analysis
in many field allow concluding that lognormal distributions
have arisen as a possible alternative to power law distribu-
tions across many fields.

Menzerath-Altmann law is devoted for certain linguistic
construction which contains the constituents: the size of the
constituents decrease with increasing size of the construction.
Eq.(12) relates f(r) syllable length to r - number of syllables
per word. Kohler [21] suggested that linguistic segments con-
tain information about its structure (besides the information
that needs to be communicated).

f(r) = α.rβ

exp(γr) (12)

Aren law (exponential distribution according to Eq.(13))
plays significant role in process modeling. Aren expression
could be derived as the special case of Menzerath-Altmann
law, when β=0.

f(r) = α

exp(γr) (13)

Fig. 6. Weibul distribution according to Eq.(11)
with different exponent k={0.5, 1, 1.5, 5} when λ=1.0.

Eliazar et al. [22] presented a universal mechanism for
the temporal generation of power-law distributions with ar-
bitrary integer-valued exponents. Hill [23] describes several
approaches for applicability of power-law. Generally, devia-
tions from the one-exponential distribution cover the stochas-
tic manifestation of item groups, and for such case data fitting
must be done using sophisticated models: Yule-Simon distri-
bution according to Eq.(14) or beta function, so called Euler
integral according to Eq.(15).

f(r) = α.βr

rγ
(14)

B(x, y) =
1∫

0

tx−1(1− t)y−1 dt. (15)

Li et al. [24] describe several two-parameter models, in-
cluding beta function, Yule function, Weibull function for lin-
guistic analysis. Letter frequencies, word-spacing, and word
frequencies were used as the ranked linguistic data. Li claims
that beta function fits the ranked letter frequency distribution
the best, but otherwise, Yule function fits the ranked word-
spacing distribution the best. Altmann, beta, Yule functions
all slightly outperform the Zipf power-law function in word
ranked- frequency distribution.

Naumis et al. [25] probed to solve the task of fit rank distri-
butions when fits usually fail at the tail. Naumis proposed to
use beta-like function. Authors claim that the observed beha-
viour at the tail seems to be related with the onset of different
mechanisms that are dominant at different scales, providing
crossovers and finite size effects.

2. Zipfian applications for languages

Dictionaries. Standardization of language always starts
from dictionaries made up from corpuses. Formulated from
first suggestions as an empirical law, Zipf law represents a
universal distribution for natural language not depending on
chosen language, word quantity in item, and specific sphere
of language usage. Universality of law allows to use it in di-
gital linguistics. Maslov [26] analyses the specific usage of
power laws: how linguistic applications could be applied for
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dictionary forming. There are several ground principles ne-
cessary for resource effectively compiling in order to create
the time-saving search. On one hand, dictionaries as spe-
cific word sorting form represent a top-application of Zipf
law in linguistics; on the other hand, time-domain processes
of word item occurrence in sequences cannot be recogniz-
ed from different slopes of Zipf curves. Willys [27] states
that king of ambiguity does not allow us to solve the rever-
se task. Maslov et al. [28] analysed the big number of for-
mulas of linguistic statistics. The notions of real and virtual
cardinality of a sign were introduced. It was concluded that
formula refining Zipf law for the occurrence frequencies in
frequency dictionaries can be extended to the big semiotic
systems. Wyllys [29] provided the jargon stardartization rou-
tine in scientific writing using zipfian distributions.

Zanette [30] analyses the family name distribution as time-
dependent process. The evolution of family-name distribu-
tions is limited vertically depending on cultural features. Em-
pirical power law distribution takes place.

Murtra et al. [31] analyse the applications of Zipf law
in the context of a very general class of stochastic systems.
Complexity of the description of the system provided by the
sequence of observations is the one expected for a system
evolving to a stable state between order and disorder. Po-
wers [32] demonstrate how Zipf analysis can be extended to
include some of the phenomena not explainable using power-
law distributions.

Natural western languages. Regularities of zipfian item
distribution are confirmed in many modern languages of
great importance, for example American English [33]. Mas-
lov [34] analyses English, French, Spanish languages as the
most dominating western languages by expansion among
spoken population all over the world. Typical application
of Zipf distribution is related to the forming of frequency
dictionary. It should be considered that varieties of dic-
tionary might be defined as a logarithmic correction to the
Zipf–Mandelbrot law whereas the main problem lies in the
tails of distribution. The tails are formed from less-frequently
or seldom occurring words derived or constructed morpholo-
gically according to the informal rules of spoken and written
language.

Tuzzi et al. [35] analyse nonstandard Italian texts such as
official presidential speeches in order to confirm the Zipf law.
The results showed the unique lexis of the corpus. The ana-
lyses allow us to find a position for each president on the syn-
thetism/analytism scale and individual characteristic features
of each president.

Popescu et al. [36] presented novel method for language
analysing. Even though Zipf law can be applied to a variety
linguistic data, a common formula of law cannot be derived
to be applicable to the all data sets. New approach to the
problem consisting of the multi-component analysis was pro-
posed and tested in 20 languages.

Ha et al. [37] analyse extremely large corpuses: English

corpus of 500 million word tokens and 689,000 word types.
Is was established the zipfian dependency takes place: the
usual slope close to γ=1 for rank less than 5,000, but then for
a higher rank it turns to give a slope close to γ=2. Ha conclu-
des that presented phenomenon is done due to foreign words
and place names. The Zipf curves for Celtic, Irish languages
were presented. Because of the larger number of word types
per lemma, it remains flatter than the English curve maintain-
ing a slope of γ=1 until a turning point of about rank 30000.

Ausloos [38] described translation problem: a comparison
of two English texts also translated into Esperanto are dis-
cussed in order to observe whether natural and artificial lan-
guages significantly differ from each other. Word frequen-
cies distribution (studied by a Zipf method) and word lengths
distribution (studied by a Grassberger–Procaccia technique)
were used. Quantitative statistical differences between the
original English text and its Esperanto translation were found.
Different power law distributions were observed. The Zipf
exponent is equal to γ∈[0.50÷0.30] depending on how a sen-
tence is defined. Together with the attractor and space dimen-
sion, such parameters could also be attached for measurement
of the author style versatility.

Programming languages. Zhang [39] discovered the
power-law regularities in the distribution of lexical tokens
in modern Java, C++ and C programs. It was established
that such distributions follow Zipf–Mandelbrot law, and the
growth of program vocabulary follows Heaps law.

Natural eastern languages. Natural eastern languages
are typical examples of expansive processes of language for-
mation in comparison with western languages. Dahui et al.
[40] presented the research where data of traditional and mo-
dern Chinese literature was used. Significant differences be-
tween Zipf law distributions of mentioned Chinese character
sets were found - due to disordered growth of dictionary. Da-
hui established that the true reason for Zipf law in language
is that growth and preferential selection mechanism of word
or character in given language.

Ranking problems occur when parallel texts in Chinese
and English are analysed according to the frequency distri-
bution. Zipf distribution is applicable until certain barrier
of token amount (1 thousand for Chinese and 5 thousand for
English). Presence of barrier can be explained by excess of
additional tokens, which were put into the context as seman-
tically uncompleted forms. Ha et al. [41] state that when
single are combined together with n-gram characters in one
list and put in order of frequency, the frequency of tokens in
the combined list follows Zipf law - γ≈1. This unexplained
behaviour is also found for English 2-byte and 3-byte word
fragments.

Xiao [42] analyses applicability of Zipf Law in Chinese
word frequency distribution. It was also found out that low
frequency words constitute over half of the corpus word oc-
currences. This is the main reason why data sparse in statis-
tical approaches could not be significantly reduced even ex-
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panding corpus scale.
Sen et al. [43] solved the task of validity of Zipf law related

to the word (item) length and the frequency was confirmed by
analysing the big sets (up to 5,800 words). The main excep-
tion is found to be one-letter words.

Changing object of investigation from regular token to spe-
cific items – family names – it is necessary to describe the
complicated origin of item, which encompasses family name
as well as birthplace. Family name distributions with or with-
out the information of the regional origins are applicable to
power function - Zipf law. Kim et al. [44] and Miyazima
et al. [45] presented the analysis family names belonging to
Korean and Japan societies, respectively. In addition, Miya-
zima states that the relation between size and rank of a family
name also shows a power law. Yamada et al. [46] used anoth-
er fitting technique by means of q-exponential function for
the distribution of Japanese family names in order to obey
power-law distribution (Zipf law).

Several differences between phonogram-based language
(English) and ideogram-based language (Japanese) were
found by analysing power law distribution by Nabeshima et
al. [47]. It was established that frequency of word usage
against rank follows power-law function with exponent γ=1
and, for Japanese ideogram, it follows stretched exponential
(Weibull distribution) function.

Sheng et al. [48] analyse the statistical properties of Eng-
lish and Chinese written human language. New approach in-
stead of power law distribution was used: so called frame-
work of weighted complex networks. These observations in-
dicate that the two languages may have different linguistic
mechanisms and different combinatorial natures. The results
display some differences in the structural organizations be-
tween the two language networks.

Natural language imitation through random text. Ran-
domly generated texts (RGT) represent sets of items with
different probability. Distributions of item frequencies of
RGT and English are similar and complies with Zipfs law. Li
[49] claims that frequency of occupancy of a word is almost
an inverse power law function of its rank and the exponent of
this inverse power law is very close to γ=1.

Several methods of text generating could be presented such
as intermittent silence process. Cancho [50] argued that the
real power-law type distribution of word frequencies could
be explained by generating a random sequence of characters
by means of intermittent silence process. According to such
method, expected frequency spectrum and the expected voca-
bulary size as a function of the text size could be efficiently
calculated.

Monkey-at-the-typewriter model. Perline [51] describes
the application of the classical Mandelbrot monkey-at-the-
typewriter model as the model where Zipf inverse power law
is applicable. An explicit asymptotic formula for the slope
of the log-linear rank-size law in the upper tail of this dis-
tribution is also obtained. By usage of the same monkey-at-

the-typewriter model, Conrad et al. [52] showed so called
recent confusion, where the rank-frequency distribution fol-
lows a lognormal distribution. This special model arises in
particular case, where letters are hit with unequal probability.

On the other hand, Cancho [53] demonstrate by means of
three different statistical tests that ranks derived from ran-
dom texts and ranks derived from real texts are statistically
inconsistent. Cancho concludes that the good fit of random
texts to real Zipf law-like rank distributions has not yet been
established.

3. Artificial intelligence systems

Cognitive mechanisms including search. Serrano et al.
[54] studied the written text problem in the context of text
recognition tasks. Two approaches were used for modeling:
Zipfs law and Heaps law. It was established the significant re-
lation between the burst nature of rare words and the topical
organization of texts. The dynamic word ranking and memo-
ry across documents – such two factors could be treated as
a key mechanisms explaining the non trivial organization of
written text.

Wyllys [55] analyses implications of Zipf law for the de-
sign of information systems. He claims that only vocabulary
control could be done using Zipf law. Wyllys says that sen-
tence about universality of Zipf law (that different subject-
fields may be characterized by different slopes of Zipf curves)
seems to have no practical applications in information system
design at present (may be in future).

Blanchard [56] solves the problem of a document retrievals
in patent mapping tools. Previous stopword list technique
was used – as a system which modified the retrieval words
into more powerful (i.e. they dramatically impacts the final
output and analysis). Stopword lists depend on the document
corpus analysed according to power-law.

Calderon et al. [57] analyse the distribution of words in
Spanish texts of Latin-American writers from Zipf law per-
spective. New approach to Zipf law dependencies was used:
the frequency of repetition of a particular word among other
different words was analysed in order to solve the linguistic
problem using statistical approach.

Kello et al. [58] analyse linguistic activities using scaling
laws which suggest the existence of patterns that are repeat-
ed across scales of analysis. Variable can vary in region be-
tween several types. In that case recurrence of scaling laws
has prompted a search for unifying principles. In language
systems, scaling laws can reflect adaptive processes of va-
rious types and are often linked to complex systems near cri-
tical points. Findings of scaling laws in cognitive science are
indicative of scaling invariance in cognitive mechanisms.

Caron et al. [59] analyse semantic extraction of word
groups belonging to the different regions of interest. Zipf
law and inverse Zipf law were used in order to characterize
the structural complexity of image textures. The distribution
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of pattern frequency was modeled as power law distributions.
Method allows the detection of regions of interest, which are
consistent with human perception, where inverse Zipf law is
particularly significant.

Altmann et al. [60] analyse big corpuses where the lan-
guage has different levels of formality. These distributions
are well characterized by a stretched exponential (Weibull)
scaling. Distributions of distances between successive oc-
currences of the same word display some deviations from a
Poisson process. The extent of this deviation depends strong-
ly on semantic type. A generative model of this behaviour
that fully determines the dynamics of word usage was deve-
loped.

Automatic text analysis is grounded on Luhn assumption
[61] that frequency data can be used to extract words and
sentences in order to represent a certain document. Losee
[62] analyses regularities in the statistical information pro-
vided by natural language terms about neighbouring terms.
We find that when phrase rank increases, moving from com-
mon to less common phrases, the value of the expected mu-
tual information measure (EMIM) between the terms regu-
larly decreases. Luhn model suggests that mid-range terms
are the best index terms and relevance discriminators. Inter-
pretation of Zipf law from information theoretic point view
was provided. Using the regularity noted above, we suggest
that Zipf law is a consequence of the statistical dependencies
that exist between terms, described here using information
theoretic concepts.

New teaching/learning methods. Vousden [63] uses ap-
plication of Zipf law in order to choose the English teaching
material as spelling-to-sound units. In that case, the quan-
tity and adaptability could be rationalized in high degree.
Alexander et al. [64] use application of Zipf law for helping
the students to create the interconnection between mathema-
tics and other disciplines.

Language evolution as an informational process. In
quantitative linguistics, Piotrowski law [65] describes the
process of language change through several parameters:

i) vocabulary growth;
ii) the dispersion of foreign or loan words;
iii) changes in the inflectional system etc.
Initial hypothesis (everything in language changes as a re-

sult of interaction between old forms and new forms) could
be formulized through differential equation:

dpt
dt = kt

.pt
.(C − pt) (16)

where dpt - change in the proportion; pt - proportion of new
forms; kt - time-dependent function.

Most important solution of mentioned differential equation
is presented below. In case, if C=1 and kt=b, solution repre-
sents so-called logistic curve for modeling the growth phe-
nomena (α is the integration constant). Fig. 7 represents the

Fig. 7. Logistic distributions for growth modeling
according to Eq.(17). β=0.2.
Different integration constant α∈{20; 100}.

logistic curve made up by Eq.(17).

p(t) = 1
1 + α exp(−βt) (17)

Joshua et al. [66] use mathematical models to analyse the
major transitions in language evolution. Word-formation is
described as a process related to Shannon noisy coding the-
orem. Model of the population dynamics of words and the
adaptive emergence of syntax is present.

Bernhardsson et al. [67] analyse functional form of the
word-frequency distribution. So called null model was used
where the words are randomly distributed throughout the text.
Initial assumption of sharing characteristics (real novel sha-
res many characteristic features with a null model) was used

together with second (functional form of the word-
frequency distribution of a novel depends on the length of
the text in the same way as the null model). This means that
an approximate power-law tail will have an exponent which
changes with the size of the text-section which is analysed.
The size-transformation of a novel is found to be well de-
scribed by a specific Random Book Transformation.

Shenon entropy in evolution model. Maillart et al. [68]
studied the evolution processes of open source software pro-
jects in Linux distributions, which offer a remarkable exam-
ple of a growing complex of self-organizing adaptive system.
The ingredients of stochastic growth models were establish-
ed empirically which are previously conjectured to be at the
origin of Zipf law.

Unpredictability of information content could be charac-
terized by Shannon entropy H where P (x) is the probability
that variable X occupies the state x. Summation must be
provided over all states N .

H(X) = −
N∑
i=1

P (xi) · log2(P (xi)) (18)

Dover [69] proposed novel formalism of maximum princi-
ple of Shannon entropy in order to derive the general power
law distribution function. There are big number of exam-
ples where Boltzmann entropy is related to the paradigm of
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“internal order”: complexion, self-interacting, self-organized
system etc. Evolution of structure could be modeled by de-
scribing the noninteracting conditions since the Shannon en-
tropy is equivalent to the Boltzmann entropy under equilib-
rium. This formalism was demonstrated in toy model where
Zipf law comes out as a natural special point of the model.

Nesterova [70] presented large review of applications of
Shenon entropy. Main paradigms - system, structure, infor-
mation - and corresponding parameters - entropy, negentropy
- are desribed for characterization two different - metric as
well as information system.

Cancho [71] describes a general communication model
where objects map to signals, a power function for the dis-
tribution of signal frequencies is derived. Cancho claims that
many systems in nature use non-trivial strategies for easing
the interpretation of a signal. Presented model relies on the
satisfaction of the receiver communicative needs when the
entropy of the number of objects per signal is maximized. Es-
timation in linguistic context is surprising: present exponent
(γ≈2) is clearly different from the typical of Zipf law (γ≈1).
It means that Zipf law reflects some sort of optimization. On
other hand, the words are used according to the objects (e.g.
meanings) they are linked to (linguistic approach).

Cancho [72] analyses the new model for Zipf law pro-
posed for the human word distribution in the framework of
information theory: from a no communication phase to a
perfect communication phase. Scaling consistent with Zipf
law is found in the boundary between phases. The exponents

are consistent with minimizing the entropy of words. Pre-
sented model is especially suitable for the speech of schizo-
phrenics. Zipf exponent predicted for the frequency versus
rank distribution is in a range where γ>1, which may explain
the word frequency distribution of some schizophrenics and
some children, with γ∈[1.5÷1.6]. Among the many models
for Zipf law, none explains Zipf law for that particular range
of exponents. In particular, two simplistic models fail to ex-
plain that particular range of exponents: intermittent silence
and Simon model.

Conclusion
1. Many linguistic ranked item frequency distributions

could be described using Zipf or Zipf-Mandelbrot law
with exponent γ≈1. Increasing of exponent up to γ≈2
(long tail problem) is related to the stochastic nature of
items.

2. Yule, beta and Manzerath-Altman distributions could be
treated as the “modifications” of more general power-
low where specific fitting parameters are useful for pre-
cisely adequacy to original distribution.

3. In linguistics, power-law represents influence of human
behaviour where language as a communication tool can
be used. Dependencies according to Lotka law (expo-
nent γ=2) and Zipf law (exponent γ=1) must be treated
as expression of the boundary conditions by analysing
text in linguistics.
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