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Introduction

Power-law dependencies are very large distributed in the
world. Many sets of data studied in economical and natural
sciences can be approximated by the dependence where pro-
bability is inversially proportional to the item rank. Many
factors in economics such as executive pay, income, trading
volume, international trade, wealth, stock market returns, the
size of cities and firms etc are surprisingly distributed accord-
ing to power law with exponent equal to 1.

As an example, power law is well known in linguistics.
Items of large regular texts written in any human language
are distributed not randomly but follow a power law.

George Zipf [1] found that frequency f(r) of item (word)
occurrence in finite corpus is inversely and linearly related to
item rank r(w) – so called Zipf law, see Eq.(1).

f(r) = α

rγ
(1)

Benoit Mandelbrot [2] proposed the generalized expression
of Zipf distribution as a discrete probability distribution – so
called Zipf-Mandelbrot distribution.

f(r) = α

(1 + βr)γ (2)

f(r) = α

β + rγ
(3)

Both distributions contain the adjustable parameters α, β,
γ which are item content-dependent. In particular case for
ranked frequency f(r) of item occurrence in finite English
corpus, Zipf distribution parameters are following: α≈0.1,
γ≈1 (Eq.(1)). Fig.1 represents idealized single-linear Zipf
dependence in log-log scale.

In theory of statistics, the Yule–Simon distribution is a
discrete probability distribution.

f(r) = α.βr

rγ
(4)

Eq.(4) represents the limiting distribution of a particular sto-
chastic processes which was studied by Udny Yule as a distri-
bution of biological objects. Herbert A. Simon [3] rational-
ized mentioned compound distribution where the parameter
of a geometric distribution was treated as a exponential func-
tion.

Exponential function – see Eq.(5) – is useful for compa-
rative analysis when function growth (decay) rate is propor-
tional to the function argument. In many cases exponential
model could be treated as the fundamental due to relations to
the Gauss normal distribution.

f(r) = α

exp(γr) (5)

For multi-level complex system, second generalization of
Zipf law was realized as well-known Menzerath-Altmann
equation [4] – see Eq.(6).

Fig. 1. Frequency dependence on rank. Idealized single-linear
Zipf distribution in log-log scale - see Eq.(1), γ=const.
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Fig. 2. Frequency dependence on rank. Idealized single-linear Zipf distribution, Eq. (1), α=1, γ=1. column bar, red.
Pareto chart, blue. 20% of products gives 80% of profits (Pareto rule).

f(r) = α.rβ

exp(γr) (6)

Gibrat law claims that size of firm and its growth rate are
independent [5]. Vilfredo Pareto observed in 1906 that 80%
of the land in Italy was owned by 20% of the population. The
Pareto principle (also known as the principle of factor spar-
sity, so-called factor scattering or 80/20 rule) states that, for
many events, roughly 80% of the effects come from 20% of
the causes.

f(r) =
[

r

rmin

]−γ

(7)

Fig. 2 represents Zipf distribution (column bars represent
the ranked frequencies - individual values in descending or-
der) and Pareto chart (line graph represents cumulative total
index). The purpose of Pareto chart is to highlight the most
important amount of ranked factors. In many cases, 80% of
content could be titled as significant. Pareto chart belongs to
the famous tools of quality control.

Gutenberg–Richter law [6] expresses the relationship be-
tween the magnitude M and total number of earthquakes N
in any given region and time period.

log10 N = α− β.M (8)

Eq.(8) was derived originally in seismology from empirical
data. Modern attempts in explanation are grounded on self-
organized criticality.

Hill estimator [7] is a popular method for estimating the
thickness of heavy tails. Approximation of the distributional
tail must be provided with a power function. In practice it is
often true equation Eq.(9) for x>0:

P (X > x) ≈ Cx−γ (9)

Then the idea is to estimate the parameters C > 0 and γ> 0
by a conditional maximum likelihood estimate based on the
r+1 (0<r<N ) largest order statistics, which represent only
the portion of the tail for which the power law approximation
holds.

Usage of Hill estimator in some cases is sophisticated but
sometimes it is necessary due to so called robustness of de-
pendencies. Since it only depends on the shape of the pro-
bability tails, it can be applied in situations where the form
of the distribution is unknown. This is typically the case in
applications to finance, where heavy tails are common.

Zipf law in economics is well-known by modeling the
ranked firm size distribution, income-wealth distribution, ci-
ty size distribution etc. Power law distribution of such type
(so called zipfian) through parametrization are related to the
Pareto distribution. This review is devoted to analysis of
application of scaling law in economics. Six themes of big
importance are observed here:

1) company size and bankruptcy;
2) wealth distribution;
3) resourses and investment strategy;
4) trading / stock market models;
5) city creation mechanism;
6) driving forces for city expanding.

1. Company size and bankruptcy

Economic prosperity is determined by the activity of the
firms. Firms, stock companies, corporates etc are establish-
ed to achieve certain economic goals for a certain period of
time. Creation, growth, prosperity, stagnation, and bankrupt-
cy - these states of company describes the natural way of de-
velopment, which influences the macro-economic indicators.
Although firm growth and bankruptcy are stochastic process-
es, they could be forecasted by analysing dynamical tenden-
cies in certain economic area.

Ausloos et al. [8] state that many problems in economy and
finance is possible to solve using methods of statistical phys-
icists. Presence of financial cycles and existence of power-
law correlations in economic systems allow to use digitalized
methods such as fluctuation analysis, multi-component ana-
lysis etc. The well-known financial analyst technique, moving
average, is shown to raise questions about fractional brown-
ian motion properties. Also Zipf method is useful for sorting
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out short range correlations.
Wright [9] represent the self-organized dynamic model of

the social relations between workers and capitalists. Sev-
eral empirical distributions were used: power-law firm size
distribution, the Laplace firm and GDP growth distribution,
the lognormal firm demises distribution, the exponential re-
cession duration distribution, the lognormal–Pareto income
distribution, and the gamma-like firm rate-of-profit distribu-
tion. In the framework of model, these distributions are in-
terconnected in order to generate the business cycle phenom-
ena. The generation of an approximately lognormal–Pareto
income distribution and an exponential–Pareto wealth dis-
tribution demonstrates that the power-law regime of the in-
come distribution can be explained by an additive process on
a power-law network that models the social relation between
employers and employees organised in firms, rather than a
multiplicative process that models returns to investment in
financial markets.

Europe and USA. Firm growth could be modeled as clus-
tering process. Clustering of large number objects was pro-
vided by means of Zipf and Yule distributions [10]. Gibrat
rule of proportionate growth claims that size of firm and its
growth rate are independent. In many cases, Girbat law con-
tains empiric error due to stochastic grown process [11].

Galeo et al. [12] analyse very large amount of data contain-
ing G7 group’s firms over the period 1987÷2000 in several
business cycle phases. Power law distributions are satisfied
in all cases, but differences between parameters related to the
recession and expansion processes are significant (the expo-
nent γ→1, i.e., the resulting size distribution generally is not
zipfian).

Axtell [13] analyses the distribution of USA firm sizes at
historical perspective. Zipf distribution at lognormal scale
takes place. Wyart et al. [14] studied Sutton ‘microcanon-
ical’ model for the internal organization of firms as an alter-
native model based on power-law distribution. In that case,
growth rates are asymptotically gaussian, whereas empirical
results suggest that the kurtosis of the distribution increases
with size.

Amaral et al. [15] analyse the Compustat data base comp-
rising all publicly-traded United States manufacturing firms
within the years 1974-1993. Amaral concludes the distribu-
tion of the logarithm of the growth rates, for a fixed growth
period of one year, and for companies with approximately the
same size, displays an exponential form.

Asia. Taking into account the parameter expressing the
size of firm, power law expressions allow to receive the cor-
related distributions involving both processes: destruction
and creation [16-17]. Some kinematical relationships be-
tween Pareto–Zipf and Gibrat laws are presented by Fujiwara
[18]. Fujiwara et al. [16] analyse large number of European
firms using power-law dependencies. Upper-tail of the distri-
bution of firm size can be fitted with Zipf dependence, and
that in this region the growth rate of each firm is independent

of the firm’s size. This sentence satisfied the Gibrat law.
Zhang et al. [19] analyse the data of top 500 Chinese firms

from the year 2002 to 2007. Dependence of firm size on rank
is presented according to Zipf law (exponent γ=1 for each
year). Phenomenon explanation of it based on a simple eco-
nomic model which takes capital accumulation into account.

Gupta et al. [20] studied the statistical distribution of firm
size for USA publicly traded firms through the Zipf plot tech-
nique. Sale size is used to measure firm size. The log-normal
distribution has to be gradually truncated after a certain cri-
tical value for USA firms. Therefore, the original hypothesis
of proportional effect proposed by Gibrat is valid with some
modification for very large firms.

Bankruptcy. Byoung Hee Hong et al. [21] studied the
scaling behaviours for fluctuations of the number of Korean
firms bankrupted in 2002-2003. Power law distribution of
the number of the bankrupted firms takes place and Pareto
exponent is close to unity.

Fujiwara [17] studied the data of Japanese bankruptcy in
1997. Zipf law dependencies could be estimated for the dis-
tribution of total liabilities of bankrupted firms in high debt
range. The life-time of these bankrupted firms has exponen-
tial distribution in correlation with entry rate of new firms.
Debt and size are highly correlated, so the Zipf law holds
consistently with that for size distribution.

2. Wealth distribution

Souma [22] reported empirical studies on the personal in-
come distribution, where two models were used: lognormal
and power law. Pareto and Gibrat indexes were used as an
unversal factors in order to estimate the temporal changes.

Europe and USA. Pareto distribution was devoted to de-
scribe the allocation of the wealth among individuals. In any
society at any times the larger portion of the wealth (80% by
Pareto [23], 70% by Gide [24]) is owned by a smaller per-
centage of the people (20% Pareto, 30% by Gide).

Hegyi [25] analyses the distribution of wealth in the me-
dieval Hungarian aristocratic society. Wealth distribution
was find according to power-law nature. Using no-trade li-
mit of wealth-distribution model, Pareto law validity was
confirmed for feudal society. Obtained Pareto exponent
γ∈[0.92÷0.95] is closed to 1.

Iglesias et al. [26] analyse the emergence of Pareto wealth
power-law distribution. Models including the risk factor were
proposed and tested. For constant risk aversion the system
self-organizes in a distribution that goes to a Gaussian. Sur-
prisingly, it was established that random risk aversion can
produce distributions going from exponential to log-normal
and power-law. Correlations between wealth and risk aver-
sion was found.

Parameterization using temperature model occurs by solv-
ing unregular tasks of large scale wealth distribution. Dragu-
lescu et al. [27] analyse the data on wealth and income distri-
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butions in the United Kingdom, as well as in several states of
the USA. Great majority of population is described by an ex-
ponential distribution, and the high-end tail follows a power
law. New empirical parameter – temperature (as analogy in
physics) was introduced in order to characterize “the kinetic
energy” of society.

Hernandez-Perez et al. [28] analyse company size distribu-
tion for developing countries using the framework proposed
by Ramsden et al. [29]. Not adequate living conditions not al-
low to compare the usual makroeconomic parameters such as
Zipf exponent etc. Hypothesis of additional parameter which
plays a role analogous to the temperature of the economy oc-
curs after decision that the level of economic development
must be estimated in usual power-law dependencies.

Ausubel [30] analyses the myth Living like America from
the economic perspectives. He claims from historical point
of view that incomes vary for the very simple reason: income
crowns the successful completion of a series of multiplicative
tasks, causing a skewed distribution. As incomes rise, how-
ever, economic, social, and environmental requirements and
capacities grow.

Trigaux [31] describes the main principles for tasks of
econophysics and economy simulations. Ground idea could
be formulated as follow: the repartition of wealth in every
economic system always occur in Pareto law. As this inegali-
tarian repartition is a cause of many problems in the world, it
would be interesting to find a remedy. Econophysics studies
always start from the hypothesis as what economy systems
are formed only of agents perfectly egocentric, each seeking
only to gather the maximum of wealth for himself. Trigaux
formulated two questions:

i) should the Pareto law come only of this limiting hypo-
thesis (the maximum of wealth for himself)?

ii) should the Pareto law come in case if agents had other
types of behaviours, for instance altruistic?

In order to simulate the proposed situation, two behaviours
(altruism and egocentrism) were parameterized. Really much
more egalitarian repartition appears, even with a relatively
low rate of altruism (15%). More so, this egalitarian repar-
tition occurs according to a Gauss law which is completely
different law from that of Pareto.

Asia. Okuyama et al. [32] analysed the distribution func-
tions of annual income of companies. Power-law distribu-
tion (according to Zipf law) was confirmed. Aoyama [33]
analysed personal income, company’s income, and various
measures of company size. Some relationships under the Pa-
reto–Zipf law and Gibrat law of detailed balance were estab-
lished as a basis for perturbative treatment of the economic
change.

Isikawa et al. [34] analyse the database of high income
companies in Japan. Quantitative relation between the aver-
age capital of the companies and the Pareto index was find.
Quantitative relation between the lower bound of capital and
the typical scale at which Pareto law breaks was established.

Theoretical study of the changes in poverty with respect
to the ‘global’ mean and variance of the income distribution
using Indian survey data was done by Chattopadhyay et al.
[35]. Authors claim that Pareto poverty function satisfies all
standard axioms of a poverty index presented by Kakwani
[36] and Sen [37]:

i) monotonicity axiom: given other things, a reduction in
income of a person below the poverty line must increase
the poverty measure;

ii) transfer axiom: given other things, a pure transfer of in-
come from a person below the poverty line to anyone
who is richer must increase the poverty measure.

Evolutionary games represent an important factor in simu-
lating of economic environment. Mao-Bin Hu et al. [38]
proposed full-time study of wealth distribution with agents
playing evolutionary games on a scale-free social network.
Pareto power-law distribution is satisfied for agent’s personal
wealth prediction. Phenomenon of accumulated advantage
(so called Matthew effect, the rich get richer and the poor get
poorer) was validated also by analysing the agent’s personal
wealth correlation to its number of contacts (connectivity).

3. Resourses and investment strategy

Naldi [39] studied the relationships between Zipf law and
the major concentration indices. Standard model where the
firms’ size are related to the financial investment amounts was
used. It was established that Hirschman–Herfindahl index
[40] is the most sensitive index in contexts where Zipf law
applies. Applications of Zipf law could play an estimating
role many very sensitive marked indicators.

Ausloos et al. [41] describe strategy how to apply the Zipf
method to extract the γ-exponent for seven financial indi-
ces (DAX, FTSE, DJIA, NASDAQ, S&P500, Hang-Seng and
Nikkei 225). Ausloos et al. [42] studied short-range time cor-
relations in financial signals by means of Zipf method and the
i-variability diagrams (VD). A precise Zipf diagram analysis
has been shown to lead to a non-immediate information on
the signal behaviour, even taking into account error bars.

Alegria et al. [43] probed to relate the parameters of
Pareto-type distribution of bank sizes to the specific bank in-
dexes such as Herfindahl–Hirschman index and the top 5%-
concentration ratio. Effect of changes in Zipf exponent γ
correlates to sample size. Wilhelm et al. [44] analyse an ele-
mentary stochastic model representing the system with finite
resources where power-laws distribution takes place. This
model extends the scale-free network model (SF) to include
the fact of finite resources.

Saif et al. [45] investigate the problem of wealth distribu-
tion from the viewpoint of asset exchange. The simple asset
exchange models (grounded on Pareto law) fail to reproduce
trading strategies. Two models were used for successful si-
mulation of trade:
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i) Yardsale (YS) purpose model; and
ii) theft and fraud (TF) model.

Power-law tail in wealth distribution was observed in case if
the agents are allowing to follow either of the mentioned
models with some probability.

4. Trading / stock market models

The most important task is to create the dynamic market mo-
del which could predict the trade type and day-to-day fluc-
tuations. Balakrishnan et al. [46] studied and modeled the
distribution of daily stock trading using the power law. New
phenomenon was established that the trading is becoming in-
creasingly concentrated in a subset of stocks. The power law
exponent systematically increases with time suggesting. Tun-
cay et al. [47] analyse the daily financial volume of trans-
action on the New York Stock Exchange and its day-to-day
fluctuations. Gaussian distribution for longer time intervals,
like months instead of days takes place. Otherwise, power-
law tails could be attracted to long-term trends. Uncondi-
tional volatility distribution [48] of the Italian futures mar-
ket were studied by Reno et al. Transactions in period of
2000 and 2001 (including event of dramatic 11 September
2001) were characterized by unusually high volatility levels.
Results show that the standard assumption of lognormal un-
conditional volatility has to be rejected for such a turbulent
sample, since it is unable to capture the tail behaviour of the
distribution.

Gabaix et al. [49] presented a theory of excess stock mar-
ket volatility. Market movements are due to trades by very
large institutional investors in relatively illiquid markets. Po-
wer law distribution can be presented for resuming evaluation
of trade, but optimal trading behaviours are stochastically-
dependent.

Ideal-gas-like-models. Chatterjee et al. [50] reviewed big
number of market models differing by shape of the distribu-
tion of wealth. Several paradigms from physics such as ideal-
gas-like models of markets are observed across varied econ-
omies. Presented realistic model where the saving factor can
vary over time (annealed savings) is yielding the Pareto distri-
bution of wealth in certain cases. Numerical simulation pre-
sented in Ref. [51] describes the ideal-gas model of trading
markets, where each agent is identified with a gas molecule
and each trading as an elastic or money-conserving two-body
collision. Unlike in the ideal gas, quenching/ saving proper-
ties are included. Model is showing self-organized criticality,
and combines two distributions: Gibbs and Pareto.

Bhattacharyya et al. [52] obtained common mode of ori-
gin for the power laws:

i) the Pareto law was used for the distribution of money
among the agents with random-saving propensities in
an ideal gas-like market model; and

ii) the Gutenberg–Richter law for the distribution of over-
laps in a fractal-overlap model for earthquakes.

Lotka–Volterra formalism. Market stability was stud-
ied using the generalized Lotka–Volterra (LV) formalism by
Louzoun et al. [53]. LV equations are non-linear differential
equations, pair of first-order, frequently used to describe the
time-dependent dynamics of biological systems in which two
species interact, one as a predator (y) and the other as prey
(x):

dx
dt = αx− βxy (10)

dy
dt = δxy − γy (11)

Parameters α, β, γ and δ describe the interaction of the
two species. First derivatives of x and y represent the
growth/decreasing rates of the mentioned populations over
time.

Power law distributions in the individual wealth (accord-
ing to Pareto law) and financial markets returns (fluctuations)
show auto-catalytic or multiplicative random character of the
capital dynamics. Exponent of the power laws turns out to be
independent on the time variations of the average. This ex-
plains also the stability over the past century of experimental-
ly measured Pareto exponent. Strong feedback signalizes the
danger of the market stability.

Solomon et al. [54] adapted generalized LV model with
mutiagent systems in order to investigate economic systems.
Weak generic assumptions on capital dynamics were realized
in model of predictions for the distribution of social wealth.
In ‘fair’ market, the wealth distribution among individual in-
vestors fulfils a power law.

Simulations and games. Chebotarev [55] propose the
study of a hierarchical income model for asymmetrical trans-
actions: directions of money movement and commodity
movement are opposite. The price-invariance of transactions
means that the probability of a pairwise interaction is a func-
tion of the ratio of incomes, which is independent of the price
scale or absolute income level. The income distribution is a
well-defined double-Pareto function, which possesses Pareto
tails for the upper and lower incomes. The Pareto exponents
are also stable with respect to the choice of a demand function
within two classes of status-dependent behaviour of agents.

Mohanty [56] presented an economy model by taking N
independent agents who gain from the market with a rate
which depends on their current gain. Power-law distribu-
tions take place. Kuscsik et al. [57] studied the model of
environmental–economic interactions. The interacting het-
erogeneous agents are simulated on the platform of the emis-
sion dynamics of cellular automaton. Steady-state and non-
equilibrium properties were established in such type simula-
tion. Relationship to Zipf law and models of self-organized
criticality were discussed.

Yanagita et al. [58] studied a simple model of market share
dynamics with rational consumers and firms interacting with
each other. Simulation results show that three phases of mar-
ket structure appear depending upon how rational consumers
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are. Three phases could be titled as the uniform share phase,
the oligopolistic phase, and the monopolistic phase.

In an oligopolistic phase, the market share distribution of
firms follows Zipf law and the growth-rate distribution of
firms follows Gibrat law. An oligopolistic phase is the best
state of market in terms of consumers’ utility but brings the
minimum profit to the firms because of severe competition
based on the moderate rationality of consumers.

5. City creation mechanism

City growth phenomenon is well known from the Antic time
as the parameter of civilization development. Growth is sti-
mulated by the human activity in case if the resources are in
enough amounts. City growth process could be described ac-
cording to the power-law dependence as was checked in the
middle of XX century. Formulated as an universally law, city
size distribution was related to the power function. So call-
ed Zipf law for cities (exponent γ=1) was treated as the quit
enough power law realization.

f(r) = α

r1 (12)

Nitsch [59] provides very large study of the empirical litera-
ture on Zipf law for cities including 515 estimates from 29
studies. Surprisingly, Zipf exponents are significantly larger
than 1.0. This finding implies that cities are on average more
evenly distributed than suggested by Zipf law.

Marsili et al. [60] presented a general approach to explain
the Zipf law of city distribution. Benguigui et al. [61] pre-
sented an application of a growth model for a system of ci-
ties (computer model simulation). Model includes a random
multiplicative process for the growth of individual entities
and for the creation of new ones. Expression with a positive
exponent -“shape exponent” and additional three parameters
was used in order to describe the dynamics of the systems’
size distributions through time. Quit good agreement at the
macro level between the model and the real data takes place.

Pareto distribution allows to make the very strong city size
estimation in many countries. Soo [62] solved the task of em-
pirical validity of Zipf law for cities, using data on 73 coun-
tries. Two estimation methods - OLS (ordinary least squares)
and the Hill estimator – were used. The OLS estimates of
the Pareto exponent are roughly normally distributed, but
those of the Hill estimator are bimodal. Variations in the
value of the Pareto exponent are better explained by political
economy variables than by economic geography variables.
Cordoba [63] derived the conditions in the framework of Pa-
reto model. Presented rules must satisfy the standard urban
model:

i) a balanced growth path; and
ii) a Pareto distribution for the underlying source of ran-

domness.
Gabaix [64] presented review surveys of well-documented

empirical power law regarding income, wealth, the size of

cities etc. Random growth, condition optimization must be
treated as the adjustable parameters. Some empirical regula-
rities currently lack an appropriate explanation. Gabaix also
describes the open areas for future research.

City size represent a geometrical distribution of urbanized
areas. Benguigui et al. [65] presented the growth model for
a system of cities which is grounded by not only Zipf law
but also other kinds of city size distributions. Power-law like
function with exponent γ (for Zipf law γ=1) was introduced.
Three classes of city size distributions depending on the va-
lue of γ were defined: i) γ>1; ii) γ<1; iii) γ=1. The model
is based on a random growth of the city population together
with the variation of the number of cities in the system. It
was concluded that the exponent γ may be larger, smaller or
equal to 1, just like in real systems of cities, depending on the
rate of creation of new cities and the time elapsed during the
growth. It is necessary to point out that the influence of the
time on the type of the geometric distribution must be treated
as significance.

Carvalho et al. [66] studied the distribution of the length of
open space linear segments, derived from maps of 36 cities
in 14 different countries. By scaling the Zipf plot of l, two
master curves for a sample of cities, which are not a function
of city size, were obtained. It means that third class of ci-
ties is obtained, and this class is out of classification order.
According to Zipf plot, this distribution is realized in region
of power-law tails with exponent γ=2. Small correlation be-
tween real data and the possibility of observing and modeling
urban geometric structures was suggested. Volchenkov et al.
[67] studied the distribution of open space in city. The area of
open space which are related to the other spaces is distributed
according to the power-law statistic. Observed universality
may help to establish the international definition of a city as
a specific land use pattern.

Stochastic model of city growth represent a behaviour of
cluster formation type where time-dependent processes oc-
curs. Zanette et al. [68] proposed stochastic model for go-
vern city formation. The model predicts a power-law popu-
lation distribution whose exponent is in excellent agreement
with the universal exponent observed in real human demo-
graphy. Zanette suggested that urban development at large
scales could be driven by intermittency processes. Duranton
[69] presented canonical model of endogenous growth with
product proliferation into a simple urban framework (which
yields Zipf law for cities). The stochastic outcomes of pur-
poseful innovation and local spillovers can thus serve as foun-
dations for random growth models.

6. Driving forces for city expanding

Mansury et al. [70] presented a spatial agent-based model to
generate a system of cities that exhibits the statistical proper-
ties of the Zipf Law. Two main factors could be estimated
as of most important significance: bounded rationality and
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maximum heterogeneity of agents. Combination of such two
factors can produce a generic power law relationship in the
size distribution of cities, but does not always generate the
dependency according to Zipf law. Zipf law breaks down
unless the extent of agglomeration economies overwhelms
the negative disagglomerating forces. Decker [71] probed to
solve the city growth task when largest cities comprise the
long tail of the distribution. In order to explore generating
processes, simple model was used. Model incorporates only
two basic human dynamics: migration and reproduction.

Semboloni et al. [72] presented the model for the distri-
bution of individuals in cities. The number of individuals is
fixed and the dynamic depends on migration from one city
to another. Two strategies were used for modeling purposes:
utilisation of resources for production and selling of products
to people. The most important statements can be formulated
as follows.

1. Because resources are uniformly distributed and shared
among individuals, the first strategy pushes individuals
in small cities - unification.

2. In turn, because selling depends on the quantity of in-
dividuals are living in a city, the second strategy pushes
individuals in big cities - diversification.

Random application of unification and diversification strat-
egies results in power-law distribution of cities.

Europe. Sarabia et al. [73] introduced the Pareto-positive
stable distribution as a new model for describing city size
data in a country. The mentioned distribution provides a flex-
ible model for fitting the entire range of a set of city size data.
The classical Pareto and Zipf distributions are included as a
particular case. City size data for Spain for several different
years was considered. The new distribution is compared with
three classical models: Pareto, lognormal and Tsallis distri-
butions.

Asia. Anderson et al. [74] analyse city size distribution in
China using two behaviours: i) the relative growth of cities
and ii) the nature of the city size distribution. This analysis
was provided in the framework of political conditions such
as Economic Reforms and the One Child Policy since 1979.
It was established as a reason for the significant structural
changes in the Chinese urban system. The city size distribu-
tion remains stable before the reforms but exhibits a conver-
gent growth pattern in the post-reform period. It was con-
cluded that log-normal rather than Pareto specification turns
out to be the preferred distribution.

Gangopadhyay et al. [75] studied the size distributions

of urban agglomerations for India and China. Authors have
estimated the scaling exponent for Zipf law with the In-
dian data (1981-2001) and Chinese data (1990-2000). Para-
meters of Pareto and Tsallis q-exponential distribution have
been estimated: for India, γ∈[1.88÷2.06] and for China,
γ∈[1.82÷2.29].

Chen [76] examined the relation between the feature of in-
creasing returns in the dynamic growth process and the pro-
perty of power law in the static limiting distribution. Fractal-
like structures used in this model implies both the power law
and rank size rule. Power law or Zipf law are valid for the
distributions of city size. Gibrat law proposes general and
neat interpretations for this regularity in a city distribution,
but the homogeneity assumption in Gibrat law shows a disre-
gard of the agglomeration effect that is essential in econom-
ic interpretation. Path-dependent nonlinear Polya processes
were appended to analyse the relation between the feature of
agglomeration in the path-dependent processes and rank-size
relations in the limiting distributions. Author conclude that
the assumption of agglomeration economies must be signi-
ficant. It allows to state that the agglomeration benefits in-
crease without a ceiling as the residents are added to the city.

South America. Moura et al. [77] studied the application
of Zipf law for cities distribution in Brazil. The results show
that the population distribution in Brazilian cities does fol-
low a power-law similar to the ones found in other countries.
Values of the power-law exponent were found to be about
[2.2÷2.3]. More accurate results were obtained with the
maximum likelihood estimator, showing an exponent equal
to 2.41 for 1970 and 2.36 for 2003÷2006.

Conclusions
1. Power function dependence in Zipf law realization al-

lows to conclude that popular regularities in economics
(zipfian and also logarithmic) can have the common sto-
chastic origin.

2. Zipfian behaviour is encountered also in chaotic dyna-
mical systems with multiple agents (attractors). Devia-
tions from linear dependencies in log-log scale allows
to state the presence of perturbations.

3. Time-dependent or parameter-dependent exponent dy-
namics (from Zipf-Mandelbrot and Yule dependencies)
allow to model and to estimate the survivor of economic
system (self-organised criticality).

4. Cities are on average more evenly distributed than sug-
gested by Zipf law.
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