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Abstract. This work is devoted to the search of correlations - similarities and differences - between indexes
of metric and information organization in the complicated cartographic structures. The indicators give the
required quality of landscape and represent the quality of residential environment indirectly. Research data
are taken from geographical maps and analysed using geographic information system (GIS). Analysis of
data is based on methods of mathematical statistics. Results of comparative research of two measures are
reported in this study.
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Introduction

Forests of definite size are analyzed in this work so their areal
is constant as well. Previous two our publications represent
an overview of paradigms [1] and novel model description
[2] based on information indicators which are useful for such
complicated modelling. The indicators give the required qua-
lity of landscape and represent the quality of residential envi-
ronment indirectly. Research data is taken from geographic-
al maps and analysed using geographic information system
(GIS).

Purpose of this work is an analysis of data based on me-
thods of mathematical statistics.

1. Real forests: methodology of description

Research data is taken from geographical maps and analy-
sed using geographic information system (GIS). The analyzed
segment of forests is shown in Fig. 1. Area of observation is
selected randomly. Then we assign a binome to the function-
al area according to a model described in Ref. [2]. Fig. 2
represents dividing of layer into binary components.

In order to calculate the indicator of metric organization,
we need to take the area of the binome in consideration. To
find the area of it, we have to know whole perimeter that con-
sists of outer perimeter of binome and inner perimeter of fo-

rest. Fractal dimension Dz of binome f(z) is approaching
the value of 2, and for area calculation we use the simplest
form:

Dz → 2 (1)

f(z) =
(
Pz
4

)Dz

→
(
Pz
4

)2
(2)

f(z) =
(
Pm + Pp

4

)2
(3)

where Pm - perimeter of the binome - area of forest,
Pp – outer perimeter of binome.
It is shown graphically in Fig. 3. This way, by analyzing data
from GIS, we may calculate indicators of organization.

2. Evaluation of organization in map layers

2.1. Metric organization

Index of metric organizationMi was described in Refs. [2-3].
We use the following routine for current modeling.

Index of metric organization. f(x) – is a function de-
scribing a component of a forest layer (xi – metrics of fo-
rests); f(x1, ..., xk) - function describing average value of a
forest layer; k – amount of components in a layer;
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Fig. 1. Layer of digital map containing forest arrays.

Fig. 2. Dividing of layer (see Fig. 1, center-right)
into binary components.

f(x1, ..., xk) - function of component average values of a
layer;
Pm - perimeter of a component;
Pp - outer perimeter of binome;
Dm - fractal dimension of forests;
Sm - area of a component of forest layer.

Mi = 1−
[
f(x1, ..., xk)
f(x1, ..., xk)

]
(4)

f(x) =
{(

Pm
4

)Dm

+
(
Pz
4

)2
}

(5)

Pz = Pm + Pp (6)

Dm = lnSm
lnPm − ln 4 (7)

f(x) = 1
n

n∑
i=1

{(
Pm
4

)Dm

+
(
Pz
4

)2
}
i

(8)

f(x) =


(
Pm
4

)Dm

+
(
Pz
4

)2
 (9)

To determine the difference of a structure over the time
of evolution, geometrically correct forms of units should be
used. Function describing one element of a layer when de-
scribing it by metrics x and y would look like:

f(x) = x · y + r · sx · sy. (10)

where x and y are averages of metrics, r - coefficient of

Fig. 3. In order to measure the area of binome, perimeters are
calculated, where the perimeter of binome consists of outer and
inner perimeters. Inner perimeter is the perimeter of a forest.

correlation of x and y values, sx and sy - standard deviations
of metrics.

2.2. Informational organization

Three indexes of informational organization were described
in Ref. [2]. For current modeling we use the following rou-
tine, described in Refs. [4-6].

First index of informational organization.  
H(X) - Shanon entropy;
Hmax - value of entropy when all probabilities are the same.
Nk - amount of classes.
pi - probability of a specific result of experiment.
n(Pm) – amount of elements in a class sorted by a perimeter
of forests.
n(dm) – amount of elements in a class sorted by fractal di-
mension of forests.
N – total amount of elements.
S(Pm) - area of a class sorted by a perimeter of forests.
S - total area of forests.
S(dm) - area of a class, sorted by fractal dimension of forests.

R = 1− H(X)
Hmax

(11)

H(X) = −
Nk∑
i=1

pi
. log (pi) (12)

Hmax = lnNk (13)

pi = n(dm)
N

(14)

pi = n(Pm)
N

(15)

pi = S(dm)
S

(16)

pi = S(Pm)
S

(17)
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Second index of informational organization.  
T (n(Pm), n(dm)) - negentropy of experiment;
H(n(Pm)) - entropy of experiment with parameter Pm;
H(n(dm)) - entropy of experiment with parameter dm;
ni - number of elements in a class, sorted by perimeter;
N - total number of elements;
nj - number of elements in a class, sorted by fractal dimen-
sion;
H(n(Pm), n(dm)) - entropy of matrix n(Pm)× n(dm);
ni,j - elements of matrix n(Pm)× n(dm).

R = T (n(Pm), n(dm))
H(n(dm)) × 100% (18)

R = T (n(Pm), n(dm))
H(n(Pm)) × 100% (19)

T (Pm, dm) = H(n(Pm))+H(n(dm))−H(n(Pm), n(dm))
(20)

H(n(Pm)) = −
∑
i

ni
N

log ni
N

(21)

H(n(dm)) = −
∑
j

nj
N

log nj
N

(22)

H(n(Pm), n(dm)) = −
∑
i

∑
j

ni,j
N

log ni,j
N

(23)

Third index of informational organization.  
T (Pm, dm) - negentropy of experiment;
H(Pm) - entropy of experiment with parameter Pm;
H(dm) - entropy of experiment with parameter dm;
ni - area of a class, sorted by perimeter;
N - total area;
nj - area of a class, sorted by fractal dimension;
H(Pm, dm) -entropy of a matrix Pm × dm;
nij - elements of matrix Pm × dm.

R = T (Pm, dm)
H(dm) × 100% (24)

R = T (Pm, dm)
H(Pm) × 100% (25)

T (Pm, dm) = H(Pm) +H(dm)−H(Pm, dm) (26)

H(Pm) = −
∑
i

ni
N

log ni
N

(27)

H(dm) = −
∑
j

nj
N

log nj
N

(28)

H(Pm, dm) = −
∑
i

∑
j

ni,j
N

log ni,j
N

(29)

2.3. Correlations

It is very important to know the level of dependence. Various
correlations and other measurements of dependence are used
according to Ref. [7].

In order to estimate correlation bonds, the coefficient of
these bonds (unit of strength in statistical connections be-
tween variables) gains significance. It may be applied only
when there is a linear dependence in range [-1÷1]. The con-
nection is very strong if it equals to -1 and very weak when it
equals to 1. It is marked as ρ in theory of probability.

Coefficient of correlation ρX,Y of two random values X
and Y when their averages are µX and µY , and stardard de-
viations σX and σY is defined as follows:

ρX,Y = cov(X,Y )
σXσY

= E ((X − µX)(Y − µY ))
σXσY

(30)

Standard deviations σX and σY need to be finite and un-
equal zero for coefficient of correlation to have a defined
meaning. In the first part of the equation, we see the covaria-
tion of variablesX and Y that is the average of multiplication
of their deviation from average values.

Correlations may be positive or negative, depending on
their direction. For example, when there is negative corre-
lation, values of one variable decrease while the values of
other variable increase. Pearson’s coefficient of correlation is
used to measure strength of quantitative connections between
variables. Big values of this coefficient, either positive or ne-
gative, reflect strong correlation, while small values reflect
weak correlation. If correlation is insignificant, coefficient is
close to zero. Pearson’s coefficient of correlation is calculat-
ed by multiplication of pairs of values from two sets, after
subtracting the average. The difference is divided by multi-
plication of standard deviations.

rxy = 1
n− 1

∑
(xi − x̄) (yi − ȳ)

sxsy
(31)

where x̄ and ȳ are average values of observations x and y, sx
and sy - standard deviations of x and y. Coefficient of cor-
relation has these properties: when r = 1, all points (xi, yi)
are in a line that has positive coefficient of direction. When
r = -1, all points (xi, yi) are in a line that has negative co-
efficient of direction. When r = 0, all variables are linearly
independent. Table 1 represents the interpretation of strength
of correlation.

In order to prevent very strong correlation between unre-
lated variables, there is a check of significance in coefficient
of correlation:

i) zero hypothesisH0 states that coefficient of correlation
equals zero;

ii) alternative, H1 hypothesis states that coefficient is not
equal to zero.
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Table 1. Interpretation of strength of correlation.
Negative Positive Estimation

of correlation
-1.0 ÷ -0.9 0.9 ÷ 1.0 very strong
-0.9 ÷ -0.7 0.7 ÷ 0.9 strong
-0.7 ÷ -0.5 0.5 ÷ 0.7 average
-0.5 ÷ -0.3 0.3 ÷ 0.5 weak
-0.3 ÷ 0.0 0.0 ÷ 0.3 insignificant

In order to prove the H0 hypothesis, criteria t is intro-
duced:

t = rS

√
n− 2
1− r2

S

(32)

where r - calculated value of correlation. n - amount of cal-
culated values. Level of significance is free to choose. Let’s
assume that the level of significance α = 0.05. Hypothesis
H0 is rejected if absolute value exceeds the critical value of
Student’s distribution with n - 2 degrees of freedom on 0.5·α
level.

3. Data sources

Digital map of Lithuania was chosen as a data source. Layer
of forests was chosen as an object of observation. Areas of a
map were selected randomly.

Required amount of data. Using another form of Stu-
dent’s criteria and selecting the required accuracy, we may
determine the required amount of data:

t = (x̄− x̂)
σn

(33)

where x̄ is theorical average of data, x̂ - mathematical aver-
age of data, σn - dispersion of data. Switching it for sample
parameter, we get:

σ2
n = σ2

n
≈ 1
n(n− 1)

n∑
i=1

(∆xi)2 = s2
x̄ (34)

sx̄ = sx√
n

(35)

If there is a need of accuracy of 0.182, we may calculate
required amount of data from 2-43:

sx̄ = 0.182sx, (36)

0.182sx = sx√
n
, (37)

n =
(

1
0.182

)2
≈ 30. (38)

In order to get accuracy of 0.182, set of amount of 30 va-
lues must be used.

4. Results and discussion

Starting data represent the primary as well as derived para-
meters. Several primary parameters such as areas and peri-
meters of forest elements, areas and perimeters of binomes,
amount of elements in classes sorted by perimeter were used.
Nine indicators of organization were calculated - see Table 2.

Also derived parameters such as fractal dimensions, va-
lues of model function, average values of model function,
values of model function of average values; fractal dimen-
sion of forests; areas of classes sorted by perimeter and frac-
tal dimension, indicators of probability and informational or-
ganization, matrices for calculation of negentropy, values of
negentropy were included.

Main task could be formulated as follows: to find the
strong correlations as relations between indicators of metri-
cal (M ) and informational organization (R1,R2,R3,R4,R5,
R6, R7, R8). Such type relations could be most interesting.
Values of correlations for analyzed indicators are presented
in Table 3.

Looking at Table 3, we may conclude that the connection
between organizational indicators is weak or insignificant,
because correlation does not exceed 0.3.

It is necessary to point out that r displays direct connec-
tion. If correlation r = 0, it does not mean that there is no
connection at all. Non-linear connection may appear in this
case. We may conclude that because r is close to zero, there
is no suitable line by the data.

To check H0 hypothesis, values of t were checked (see
Table 4).

When α = 0.4, all values of t exceeding 0.855 are con-
sidered significant correlations and they are worth attention.
Values lower than 0.855 are considered insignificant. That
means that it is useful to analyse connections between fol-
lowing indicators:

i) M and R3 (1.080), R3 = f(M); see Fig. 4;
ii) M and R4 (0.913), R4 = f(M); see Fig. 5;
iii) M and R5 (1.308), R5 = f(M); see Fig. 6;
iv) M and R6 (1.308), R6 = f(M); see Fig. 7.
Choice of variables was done according the following

schema: X - indicator of metrical organization M , Y - in-
dicator of informational organization R.

Fig. 4 and Fig. 5 represent the dependences R3 = f(M)
and R4 = f(M) respectively. Following linear equations
were established from mentioned Fig. 4 and Fig. 5 respec-
tively (red line):

Y = 0.27678 ·X + 0.11983 (39)

Y = 0.19999 ·X + 0.10764 (40)

We set Student’s coefficient to 5% and see that the reliabi-
lity of correlation is 95%, but 67% of data is unreliable for
R3 and 27% of data is reliable for R4. Such data allow us to
conclude that connection between metrical and informational
organization is insignificant or there are no indicators when
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Table 2. Dependencies between indicators of metrical (M ) and informational organization (R1, R2, R3, R4, R5, R6, R7, R8).
Nr M R1 R2 R3 R4 R5 R6 R7 R8

1. 0.53 0.05 0.45 0.10 0.005 0.08 0.15 1.30 1.18
2. 0.58 0.21 0.06 0.21 0.32 1.43 1.20 1.08 1.25
3. 0.60 0.16 0.01 0.12 0.30 1.79 1.52 1.52 1.90
4. 0.38 0.21 0.35 0.35 0.40 1.27 1.53 1.02 1.10
5. 0.42 0.10 0.003 0.25 0.53 1.71 1.55 1.38 2.19
6. 0.47 0.01 0.30 0.77 0.38 1.11 1.55 3.15 1.16
7. 0.50 0.09 0.14 0.30 0.28 1.38 1.46 1.46 1.43
8. 0.68 0.06 0.02 0.06 0.23 0.98 0.94 1.14 1.40
9. 0.64 0.01 0.12 0.16 0.11 0.94 1.05 1.32 1.23
10. 0.56 0.04 0.01 0.14 0.43 1.07 1.02 1.03 1.55
11. 0.64 0.05 0.13 0.04 0.10 1.35 1.46 1.42 1.50
12. 0.59 0.13 0.42 0.74 0.24 1.28 1.93 3.58 1.22
13. 0.63 0.004 0.07 0.11 0.11 0.85 0.92 1.08 1.08
14. 0.32 0.01 0.34 0.31 0.11 0.46 0.69 0.78 0.61
15. 0.51 0.11 0.36 0.10 0.06 1.18 1.64 1.42 1.36
16. 0.60 0.08 0.35 0.14 0.06 1.23 1.72 1.67 1.52
17. 0.54 0.01 0.34 0.20 0.10 0.82 1.22 1.31 1.16
18. 0.48 0.03 0.17 0.15 0.09 1.29 1.51 1.60 1.49
19. 0.60 0.07 0.27 0.22 0.22 1.15 1.48 1.67 1.66
20. 0.63 0.06 0.30 0.18 0.13 1.16 1.55 1.23 1.17
21. 0.66 0.05 0.28 0.32 0.25 0.98 1.30 1.31 1.19
22. 0.51 0.04 0.47 0.17 0.01 0.83 1.52 1.34 1.12
23. -0.09 0.02 0.36 0.07 0.09 0.43 0.66 1.23 1.27
24. 0.63 0.01 0.53 0.41 0.14 0.45 0.95 1.38 0.95
25. 0.65 0.05 0.47 0.29 0.08 0.05 0.29 1.33 1.03
26. 0.63 0.004 0.17 0.57 0.69 0.21 0.25 0.76 1.06
27. 0.71 0.02 0.12 0.58 0.36 1.70 1.88 1.66 1.09
28. 0.61 0.40 0.64 0.06 0.02 1.51 2.48 1.92 1.85
29. 0.54 0.12 0.53 0.33 0.08 1.24 2.32 2.00 1.44
30. 0.78 0.10 0.42 0.72 0.61 1.55 2.41 2.21 1.59

probabilities are calculated by using areas of forest groups
that are classified by fractal dimension of forests (R3) or by
perimeter of forests (R4).

Fig. 6 and Fig. 7 represent dependences R5 = f(M) and
R6 = f(M) respectively. Following linear equations were
established from Fig. 6 and Fig. 7 (red line):

Y = 0.66599 ·X + 0.66504 (41)

Y = 0.89736 ·X + 0.84422 (42)

We set Student’s coefficient to 5% and see that the reliability
of correlation is 95%, but 37% of data is reliable for R5 and
36% - forR6. Such data allow us to conclude that connection
between metrical and informational organization is insignifi-
cant but direct when values of informational organization are
calculated by using expression of negentropy, where probabi-
lities are calculated by using amount of elements and divided
by entropy, which is calculated:

i) by using element number in class, classified by fractal
dimension of forests (R5) or

ii) by numbers of elements in a class, classified by fractal
dimension of forests (R6).

Although all indicators suggest that observed structures

are more or less organized, no connection between indicators
was noticed after reviewing all charts, because neither way of
examination showed strong direct dependence. Analytically,
both methods are similar - they both depend on connection
between the variables. Unfortunately analysis of correlation
did not confirm this assumption. Why there is no connection
between them? Organization of spatial structures is a term
that has multiple meanings. There is a possibility that this
property may not be represented by any single indicator and
needs multivariable characteristics. If, for example, one indi-
cator shows homogeneity, another may show anisotropy. In

Table 3. Correlations for indicators.
Indexes Correlation coefficients Pearson T -criteria
M and R1 0.07 0.371
M and R2 -0.10 0.532
M and R3 0.20 1.080
M and R4 0.17 0.913
M and R5 0.24 1.308
M and R6 0.24 1.308
M and R7 0.13 0.694
M and R8 0.09 0.478
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Fig. 4. R3 = f(M). Dependency of metric organization in-
dicator from information organization indicator when probabi-
lities are calculated based on the areas of forest groups that are
classified by fractal dimension of forests.

Fig. 5. R4 = f(M). Dependency of metric organization in-
dicator from information organization indicator when probabi-
lities are calculated based on the areas of forest groups that are
classified by perimeters of forests.

Fig. 6. R5 = f(M). Dependency of metric organization
indicator from information organization indicator when values
of information organization are calculated by using negentropy
where probabilities are calculated by the amount of elements
and divided by entropy which is calculated by the amount of
elements in a class, classified by the fractal dimension of fo-
rests.

Fig. 7. R6 = f(M). Dependency of metric organization
indicator from information organization indicator when values
of information organization are calculated by using negentropy
where probabilities are calculated by the amount of elements
and divided by entropy which is calculated by the amount of
elements in a class, classified by the perimeter of forests.

this case, there may be no correlation between them and only
future research will perhaps will solve this problem.

Conclusions
1. Research of cartographic layers in two different ways

(19 000 km2 territory was observed in total) shows that
there are no statistically significant correlations between
informational and metrical organization indicators. Two
conclusions come of this:
i) these indicators show different aspects of spatial or-
ganization;
ii) research done (variety of layers and numbers) is in-
sufficient to measure the correlation.

2. Variation of informational indicator values is bigger
than the characteristics of metrical indicator (Cu > Cv).
This difference is the significance of a structure.

3. Observation of real layers is not sufficient to determine
the sensitivity of indicators. Research should be done
by changing properties of layers by applying Moran and
Getis indicators in order to compare results. That would
help to determine the susceptibility of objects for spatial
heterogeneity, anisotropy and of metrical and topologi-
cal properties of layers.

4. In order to improve the research it is preferable to ap-
ply both: GIS and statistical computation routines for
estimation of spatial organization in cartography.
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