
MODELLING OF THE BUSINESS RULES
USING UML/OCL

Kęstutis Normantas*, Olegas Vasilecas

Information Systems Research Laboratory,
Vilnius Gediminas Technical University,

Sauletekio 11, LT20221, Vilnius, Lithuania

Received Februar 6, 2009 , accepted August 21, 2009

Abstract. Business rules are a crucial business category because they describe how enterprises are conducting business.
Their value in developing software systems, which must be susceptible to fit rapidly changing business requirements,
has made them attractive also within information system domain. As the formalization of business rules becomes a part
of the commonly practiced systems analysis process, it is desirable for there to be a single, coherent representation for
all kinds of business rules. The Object Constraint Language (OCL) as a part of the Unified Modelling Language (UML)
provides the possibility to express business rules in formal and unambiguous manner. In this paper we investigate
possibilities how to express different kinds of business rules with the UML/OCL, and discuss their advantages and
disadvantages.

Keywords: Business rules, UML, OCL

Short title: Modelling business rules

2.1

INNOVATIVE INFOTECHNOLOGIES

FOR SCIENCE, BUSINESS AND EDUCATION

INNOVATIVE INFOTECHNOLOGIES FOR SCIENCE, BUSINESS AND EDUCATION, Vol. 1 (6) 2009. Pp. 2.1–2.10

* Corresponding author, email: kestutis.normantas@isl.vgtu.lt

INNOVATIVE INFOTECHNOLOGIES FOR SCIENCE, BUSINESS AND EDUCATION, Vol. 1 (6) 2009. Pp. 2.1–2.10

2.2

Normantas et al. Modelling business rules

Introduction

Business success requires flexibility to fit rapidly changing
business environment. Therefore, business supporting
information systems (IS) should be able to adjust to
those changes in time. Unfortunately, existing systems
development approaches are not so flexible as business
requires. It is difficult to readjust traditional business
supporting IS to business changes because this process
involves many troublesome tasks, e.g. revision of the
system specification, redesigning, recoding etc. More often,
in order to satisfy business needs in time, changes are made
directly in code, without additional documentation. Later
these changes grow over to a headache to those who are
responsible for their management, and system specification
looses its significant value. Moreover, Morgan in Ref. [1]
notices that many research projects have shown that vast
majority of software problems originates from specification
error, not from the code as such. Therefore, demand on
different approach to systems development arises.
	 According to the well-known Zachman Framework
– see Ref. [2], in IS development process every system
is represented by a single or several models depending
on different aspects of modelling system and different
points of view to the system. The business rules (BR)
as their predecessors (business scope, motivation and
strategy) and as their successors (business rules model
and executable code) are concurrent with other aspects
of enterprise system (data, functions, places, people and
time). Therefore, it is very important that integration of
BR model with other system’s models as well as clear and
unambiguous understating of BR and possibility to access
and manage them should be guaranteed.
	 Regarding Barbara von Hale – see Ref. [3], an enterprise
operates according to many different kinds of rules, such
as legal mandates and rules it constructs for itself. The
basic element of a BR is the language used to express
it [4]. The most understandable form of BR is natural
language, however, this form is ambiguous and informal
to use BR in IS development process. As the formalization
of business rules becomes a part of commonly practiced
systems analysis process, it is desirable to be a single,
coherent representation for all kinds of business rules.
	 The Unified Modelling Language (UML) – see Ref. [5]
– has established itself as the leading object-oriented
(OO) analysis and design methodology. UML is used for
modelling systems within different abstraction levels [5].
The Object Constraint Language (OCL) has been developed
as business modelling language within IBM Insurance
division [6]. Recently, the second version of the OCL has
been adopted as a part of the UML standard. The OCL
supplements the UML methodology with possibility to
specify system models in more detailed and unambiguous
manner. According to Ref. [7], OCL is easy to use for an
average business or system analyst, because its syntax
is more relative to the natural language than traditional
programming languages. Nonetheless, it is a formal
language. Thus, the combination of the UML and the
OCL is a formal way to express BR in IS development
process.
	 Unfortunately, not much research is made on this topic.
Erricson and Penker presented all possibilities to model a
business with the UML – see Ref. [8] – and append a section
with a description of expressing BR with the OCL. However,
they discussed it considering few types of BR. Moreover,
they did not educe advantages and disadvantages of the
OCL as a language for expressing BR.

	 In Ref. [9], the main focus is set to the realization
of BR of constraint type expressed with the OCL into
database systems. However, the authors do not consider
other types of BR though the OCL can be used as a query
language as well as definition of derived values. More
research is made in Ref. [10], where authors consider
expressiveness of the OCL according to different types of
BR. Apparently, the investigation has been made using the
first version of the OCL. Therefore, many BR expressions
with the OCL might be limited due to its first version of
provided syntax.
	 The main aim of this research is to examine
expressiveness power of the UML/OCL to model different
types of BR. For the UML support possibility to represent
systems in different abstraction levels, BR specified in the
IS level model could be preserved until the implementation
of specific level model. The existing tools provide
opportunities for automated generation of those models.
Therefore, BR specified in IS model, after elaboration and
refinement, could be implemented in executive code.
	 For the examination of rules, widely adopted BR
classification scheme, proposed by the GUIDE project –
see Ref. [4], was selected. In this research we appeal to
the extended list of action assertion BR types.
	 The paper is structured as follows. A brief overview of
business rules is presented in Section 1. The objectives
are discussed in Section 2. Section 3 deals with the
tasks realization considering example business system is
presented.

1	 Business rules: overview

The interest in business rules has been shown for several
decades. Many definitions of business rules concept
have been presented as well as techniques to discover
and express the rules, and a lot of classification schemes
for the categorization of them have been proposed.
Unfortunately, there is no industry standard definition for
the term business rules.
	 Regarding Morgan, see Ref. [1], a business rule is a
compact statement about some aspect of a business: it
can be expressed in terms that can be directly related to
the business, using simple, unambiguous language that
is accessible to all interested parts i.e. a business owner,
a business analyst, a technical architect and so on. In
general, business rules describe how a company conducts
its business.
	 The Business Rules Group (BRG) – see Ref. [4] –
defined business rule in both business perspective and
information system perspectives: from the business
perspective, a business rule is guidance that there is
an obligation concerning conduct, action, practice or
procedure within a particular activity or sphere, and from
the information system perspective, a business rule is a
statement that defines or constrains some aspect of the
business. Business rules may be captured by business
experts, business owners or end users for keeping
business works. While IT professionals, who are also in
charge of BR capture, aim at making their applications
usable in reality.
	 The BRG formalized an approach for identifying and
articulating the rules which define the structure and
control the operation of an enterprise. They had presented
business rules classification scheme in the GUIDE project
report – see Ref. [4]. According to the GUIDE, a statement
of a business rule falls into one of the four categories.
1.	 Definitions of business terms – terms in glossaries or

INNOVATIVE INFOTECHNOLOGIES FOR SCIENCE, BUSINESS AND EDUCATION, Vol. 1 (6) 2009. Pp. 2.1–2.10

2.3

Normantas et al. Modelling business rules

entities, objects, classes depending on specification
language. Typical examples could be presented by
words: “Customer”, ”Party”, ”Employee” etc.

2.	 Facts relating terms to each other – natural
language sentences or relationships, attributes and
generalization structures in a graphical representation
of the model. Typical examples could be presented
by short sentences: “Customer address”, “Party
identification number”, “Employee is absent” etc.

3.	 Constraints (Structural/Action Assertions) – constraints
the structure or the behaviour of enterprise. Full length
sentences express behaviour of constrains: “Customer
may be one of the following status: gold, silver or
bronze” etc.

4.	 Derivations – definitions of how knowledge in one
form may be transformed into the other knowledge.
For instance, sentence containing know-how elements:
“For each item price ratio is calculated comparing with
the previous month”.

	 Application of BR in IS development process differs
into three domains: business system, information system,
and software system (SS). The last one is closely related
with implementation of BR in application and is not in the
scope of this paper.
	 From the business system perspective, business
rules should be described in a form relative to business
people. The most understandable form is natural
language. However, this form is ambiguous to be used
for specification of rules from IS perspective. For this
purpose, BRG has provided the specification of Semantics
of Business Vocabulary and Business Rules (SVBR), see
Ref. [11]. SVBR is oriented to business people and is
designed to be used for business purposes independently
of information systems designs.
	 From the IS perspective, BR must be defined in
unambiguous, clear and precise manner to be implemented
within SS later. For this purpose many different BR
modelling methods and techniques are provided. The
comparison of these techniques is presented in Ref. [12],
[13]. Substantially, selection of one of these techniques
depends on IS development approach, adopted by IS
development team. Object-oriented approach is widely
adopted and differs from others by its capability to
capture the structure (data) and the behaviour (functions)
of business system, while others are able to capture only
one of them. Recently, the UML is the de-facto standard
for object-oriented analysis and design. The OCL as
adopted part of the UML, supplements this methodology
with possibility to specify system models in more detailed
and unambiguous way. Therefore, in the third section,
investigation on modelling different types of BR with the
UML/OCL will be provided.

2	 Object Constraint Language: objectives

2.1	 Main characteristics

Object Constraint Language (OCL) is a formal language
allowing the specification of constraints in context of the
UML model. The OCL has been developed as a business
modelling language and has its roots in the Syntropy
method, see Ref. [6]. It has been adjusted to the UML
to compliment its modelling because it is not expressive
enough to provide all the relevant details of a specification.
However, the OCL is side-effects free language, therefore
it cannot change anything in the model: the state of
the system will never change because of the evaluation

of an OCL expression, even though an OCL expression
can be used to specify a state change (e.g., in a post-
condition), see Ref. [7]. Furthermore, it is not possible to
write program logic or flow control in the OCL as well as
express implementation details.
	 The main characteristics of the OCL are presented as
follows according to Ref. [7].
1.	 Both query and constraint language – it is possible to

write a query expression of a body of an operation as
well as define constraint to some attribute’s value or
existence of some object.

2.	 Mathematical foundation – it is based on mathematical
set theory and predicate logic and it has a formal
mathematical semantics.

3.	 Strongly typed language – model elements used
in the OCL expressions must conform with types,
therefore the OCL expressions can be checked during
modelling.

4.	 Declarative language – modeller can make decisions at
a high level of abstraction without going into details
how something should be calculated.

5.	 Object-Oriented analysis and design method.

	 The main purpose of the OCL could be formulated
as follows according to Ref. [6]: i) specify invariants on
classes, types or stereotypes in class model; ii) specify
pre and post conditions of operations; iii) describe guards
on transitions in state diagrams; iv) specify target for
messages and actions; v) specify derivation rules for any
expression over a UML model. Thus, considering the OCL
characteristics and using the OCL 2.0 notation [7],[16],[17]
different types of business rules will be discussed in the
next sections.

2.2 Simplified document management
system as an example.

Fig. 1 represents the class diagram of simplified document
management system based on model requirements for
electronic document and records management systems
according to Ref. [14]. In presented system every document
must have a type, a kind and some priority. Every document
must be created by some author which may be a user
or a group as well as some contact or a contact group.
Document kind of receivable must be received by some
address and kind of outgoing must be sending to some
addressee. According to the processes with documents
they may be in some state. Some documents may be
involved in a file, which is a virtual catalogue for collecting
documents. For system specification we used standard
UML notation, which description and modelling guidelines
could be found in Ref. [5].
	 The presented example is composed of different
BR. For example document type may be one of the
enumeration document types: a letter, an invoice, a
memorandum, etc. To collect and check different BR
classification scheme is required. To understand the
nature of BR and the categories into which they fall
classification scheme is presented in the GUIDE Business
Rules Project report, see Ref. [4]. Though there are a
lot of proposals how to describe and classify business
rules in business rules research community, however
GUIDE presents a formal approach for identifying and
articulating the rules that define the structure and
control the operation of an enterprise; moreover the
classification proposed by this project involves others
presented in Ref. [1],[3],[15]

2.4

Normantas et al. Modelling business rules

Fig. 1. Document management system: class diagram

3 Realisation of tasks using Object Constraint Language

In this section, considering the example discussed
above, we will check extended list of action assertion
type rules. This list involves the following types of BR: i)
instance verifiers; ii) type verifiers; iii) sequence verifiers; iv)
position verifiers; v) functional evaluators; vi) comparative
evaluators; vii) calculators; viii) update controllers; and ix)
timing controllers. Possibilities to model these types of
rules using the UML/OCL will be discussed in the following
subsections.

3.1 Instance verifiers

Each rule describes the effect of a correspondent
(constraining object) upon an anchor (constrained object)
[15]. Instance verifiers pertain to individual instances or
occurrences of correspondent object classes [4]. Instance
verifiers type includes the following subtypes: i) mandatory
constraint (requiring occurrence of some object), ii) limited
constraint (constraining number of population of object),
iii) restricted (involving recursive structures), iv) pre-existing
(requiring occurrence of some corresponded object class
to exist before anchor object class and existence at
the moment of rule check) and v) antecedent (requiring
occurrence of correspondent object class to exist before

anchor object class and it is not important or it still exists
during check of rule).
	 Instance verifiers require possibility to manipulate a
population of corresponded object class. The manipulation
of collections of objects is very common in object-oriented
systems. The OCL support different operations for
collections which may be adopted by expressing this type
of BR. All operations for collections are denoted in the
OCL expressions using an arrow; the operation following
the arrow is applied to the collection before the arrow
[6].
	 Though most rules of this type could be modelled
using standard UML notation, e.g. mandatory or limiting
constraint as cardinality of association between classes
or cardinality of object attribute, there is possibility to
express them using the OCL. For example, the rule stating
that „Every document must have a responsible user
assigned“ can be expressed as cardinality of attribute (or
association) „responsible“ or following the OCL expression
as presented in the example 1.

// example 1

context: Document

inv: self. responsible->not Empty()

Fig. 2. Mandatory constraint rule: class diagram

	 The OCL expression is stated as invariant in the
context of document. An invariant is a constraint that
should be true for an object during its complete lifetime
[7]. Thence this rule states while document exists it must
have responsible user assigned to it. In the same manner it
could be modelled limited constraint, e.g. „A file must not
have more that 1000 document involved in“ as presented

in the example 2.

// example 2

context: File

inv:self.consists Of -> size()<1000

INNOVATIVE INFOTECHNOLOGIES FOR SCIENCE, BUSINESS AND EDUCATION, Vol. 1 (6) 2009. Pp. 2.1–2.10

2.5

Normantas et al. Modelling business rules

Fig. 3. Limited constraint rule: class diagram

	 The invariant above states that the size of the collection
(number of all elements) of involved in file document
objects must be less than or equal to 1000. Similar
operation count() could be used to check the number of
occurrences of some object in the related collection.
	 For restriction of recursive structures it should introduce
recursive associations in class model. In the considering
example recursive associations are modelled as document
class attributes “isBasedOn” and “isLinkedWith”. Suppose

rule stating that “A document cannot be based on itself“. In
this case operation reject() could be involved as presented
in the example 3.

// example 3

context:Document

inv:self.isBasedOn->reject(self)

Fig. 4. Restricted constraint rule: class diagram

	 Operation reject() in this expression is used to state
that in associated with document object collection
„isBasedOn“ cannot be document object itself. Similar
operation rejectAll() could be used to except a collection of
objects from related collection. On the contrary, operations
include() and includeAll() could be used to preserve an
object or object collection respectively to be in related
collection.
	 Consider pre-existing constraint from involved
example: „Every outgoing document must be linked with

some document“. The OCL expression for this example
could be modelled in the following way as presented in
the example 4.

// example 4

context Document

inv: self. kind=Document Kind::outgoing

implies self.isLinkedWith->notEmpty()

Fig. 5. Pre-existing constraint rule: class diagram

	 The expression above states that the fact that
“document is kind of outgoing“ implies the collection of
objects “isLinkedWith” to be not empty. It follows thence
that while the document is kind of “outgoing” it must be
linked with the other document.

3.2	 Type verifiers

	 Type verifiers control the creation of multiple instances
in various object classes [4]. Type verifiers control
occurrence of objects in object classes and may be one
of four types: i) mutual (requiring that correspondent

objects exist simultaneously), ii) mutually exclusive
(requiring that no more than one correspondent object
exist simultaneously), iii) mutually dependent (requiring
that either one instance of every correspondent object
class exists, or that no instances of any correspondent
object class exist) and iv) mutually prohibited (requiring
that at least one of the correspondent object classes has
no instances).
	 For this type of rule comparison of collections should
be involved. Combination of operations for collection with
logical operator (OCL support and, or, xor operators) could
be used to express most of this type of a rule. Consider

INNOVATIVE INFOTECHNOLOGIES FOR SCIENCE, BUSINESS AND EDUCATION, Vol. 1 (6) 2009. Pp. 2.1–2.10

2.6

Normantas et al. Modelling business rules

following the rule “Document can be created only by one
of following: a user, a users group, a contact or a contacts
group”. This rule could be referred to mutually exclusive
type of type verifier. Depending on example model, the
document is created by some author which can be a user,
a user group, a contact or a contact group. The following
OCL expression mutually excludes candidate subjects to
author as presented in the example 5.

// example 5

context Document

inv:

 self.createdBy.user->notEmpty() and

(self.createdBy.userGroup -> isEmpty() and

 self.createdBy.contact -> isEmpty() and

 self.createdBy.contactGroup -> isEmpty())

 or

 self.createdBy.userGroup -> notEmpty() and

(self.createdBy.user -> isEmpty() and

 self.createdBy.contact -> isEmpty() and

 self.createdBy.contactGroup -> isEmpty())

 or

 self.createdBy.contact -> notEmpty() and

(self.createdBy.user -> isEmpty() and

 self.createdBy.userGroup -> isEmpty() and

 self.createdBy.contactGroup -> isEmpty())

 or

 self.createdBy.contactGroup -> notEmpty() and

(self.createdBy.user -> isEmpty() and

 self.createdBy.userGroup -> isEmpty() and

 self.createdBy.contact -> isEmpty())

INNOVATIVE INFOTECHNOLOGIES FOR SCIENCE, BUSINESS AND EDUCATION, Vol. 1 (6) 2009. Pp. 2.1–2.10

	 The invariant above states that one of the collections
must not be empty while others must. Other types of type
verifiers could be expressed in the same manner.. Consider
mutually prohibiting rule: “Internal document cannot be
received by or send to any subject(s)”. Corresponding the
OCL expression could be modelled as presented in the
example 6.

// example 6

context Document

inv: self.kind = DocumentKind::internal implies

self.sentTo -> isEmpty() and self.receivedBy ->
isEmpty()

Fig. 6. Mutually exclusive constraint rule: class diagram

	 The invariant above involves implication operator and
comparison of the collections. It states that document of
kind “internal” implies associated collections of objects
sentTo and receivedBy to be empty. In the same manner
it could be possible to express more of this type BR.

INNOVATIVE INFOTECHNOLOGIES FOR SCIENCE, BUSINESS AND EDUCATION, Vol. 1 (6) 2009. Pp. 2.1–2.10

Fig. 7. Mutually prohibited constraint rule: class diagram

3.3	 Sequence verifiers

According to Ref. [4], sequence verifiers control changes in
object state. If object may be in multiple states then these
rules determine the sequence in which instances of that
object class may assume those states. Sequence verifier
may be of one of the following types: i) initialling (requiring
some state on object initialization); ii) forward (requiring
transition to a higher state of object); iii) progressive and
retrogressive (requiring transition to a next higher or lower
state of object accordingly); iv) re-initializing (defining that
when object moves to a lower state it should be moved to
initial state first) and v) cyclical (defining that object can be
moved to a lower state before it moves to highest state
and vice versa).
	 This type of rules can not be fully defined in the OCL
because the OCL is a declarative language, thus can not be
used to define actions. The best way to express changes
of object states in the UML is state machine diagrams [8].
The UML state machine diagrams describe the behaviour
of a class over time of the states and transitions of a
single object progressing through its lifetime. In the UML
state machine diagrams the OCL expressions may be used
in a number of ways – see Ref. [7], but commonly used are
guards on states transitions and restrictions on states.
The guard is condition on transition in a state machine
diagram that must be met to change a state of object.
Usually, restrictions on states are restrictions on values
of links and attributes when an object is in a certain state.
Using the UML state machines to define a sequence of
object states and the OCL to express restrictions on
model elements is possible to express most of the rules
of the sequence verifiers type.
	 Referring to considering example, document lifecycle
could be explained as state machine diagram as presented
in Fig. 8.
	 The process could be described as follows. A new
document saved in system is being prepared for release.
After acceptance it may be suggested for release. After

Normantas et al. Modelling business rules

2.7

// example 7

context Document::accept()

pre: self.oclInState(draft)

post: self.isPrepared=true and self.oclInState(final)

	 The OCL expression above restricts an operation
accept() denoting that before execution of the operation
document must be in a draft state and then it must
be prepared in a final state. Thus control of changes of
object states using the OCL could be applied to the other
sequence verifiers.

suggestion for release document may be approved
or rejected. If a document is approved then it could be
released, otherwise if a document is rejected the new
version of document must be created referring to the
cause of rejection. As sequence verifiers require, the
sequence of object states is defined (by state machine
diagram) in a model. The mentioned-above guard for
transition is described as transition from the state draft to
the state final which is an entry point to release process
by the UML notation meaning. The restriction is enclosed
in brackets and denotes that transition is possible only if
document is prepared (by checking Boolean type attribute
isPrepared value). Restriction on a state is described as
releaseCandidate state denoting that document can be in
this state only if it is suggested (by checking Boolean type
attribute isSuggested value).
	 Considering the sequence verifier subtypes, the
control of object states could be preserved by operations
on any the OCL instance oclInState() or oclInState
(str:StateName). Supposing the following rule: “Every
newly created internal document is draft until it is accepted
that document is prepared for release”. Firstly, the rule
denotes that initial state where document must be in is a
draft. Corresponding the OCL expression is presented in
the example 7.

2.8

Normantas et al. Modelling business rules

Fig. 8. States of document: state machines diagram

3.4	 Position selectors

Position selectors pertain to a value, either in a value
sequence or in a chronological sequence [4]. This type of
rules is of two types: i) positioned – the lowest and the
highest, and ii) chronological – the oldest and the newest.
Supposing the rule: “Document version must increase by
one on set of version”. Respective OCL expression could
be modelled as presented in the example 8.

// example 8

context Document::setVersion(version: Integer)

pre: --none

post: version=@pre + 1

// example 9

context Document

inv: self.allInstances->forAll(doc1,doc2 | doc1 <> doc2
implies doc1.version = doc2.version + 1)

	 Iterator forAll() returns true if all elements of collection
used expression are true. In this case the operator forAll()
is used to denote, that every different element of collection
attribute’s version value should be greater by one. Thus

// example 10

context Document

inv: self.allInstances -> isUnique
(doc | doc.registrationNumber)

context Document

inv: self.allInstances -> forAll
(doc1, doc2 | doc1 <> doc2 implies
doc1.registrationNumber <> doc1.registrationNumber)

INNOVATIVE INFOTECHNOLOGIES FOR SCIENCE, BUSINESS AND EDUCATION, Vol. 1 (6) 2009. Pp. 2.1–2.10

	 The expression above denotes that after execution of
operation setVersion() document attribute version must
increase by one. It is expressed using keyword @pre which
refers to an attribute value at the start of operation.
	 Another way of expressing position selectors could be
usage of the OCL loop operations. Different iterator (loop
operation) types may be chosen depending on business
rule nature. For example, the rule mentioned above could
be expressed using iterator forAll() as presented in the
example 9.

expression of positioned type of position selectors could
be applied to the other business rules. However, the
chronological sequence rules require additional constructs
of model because the OCL does not support date or time
data types. Therefore there should be involved some utility
elements to support chronological sequence of elements
of the collection.

3.5 Functional evaluators

Functional evaluators take care of sequence in which
instances of object class are defined [4]. There are the
following types of functional evaluators: i) unique (requiring
unique sequence of values), ii) ascending and descending
(requiring sorting of values in sequence), iii) non-renewable
(requiring that any given value of the correspondent
object, if used more than once, may be used only in strictly
successive instances of the anchor object), iv) patterned
(requiring that successive instances of the anchor object
class be assigned in a specified sequence, or tests for that
condition).
	 As it was discussed in the previous section control or
modification on sequence of elements could be preserved
using iterators. For example, unique values evaluator
could be the following rule: “Document registration
number must be unique”. Respective OCL expressions are
presented in example 10.

2.9

Normantas et al. Modelling business rules

	 The expressions above are identical because the
first one uses operator isUnique() which is true if every
document has a unique registration number and the
second one is true if every pair of different document
objects, registration numbers is not the same.
	 Sorting out the collection elements could be modelled
using sortedBy() which simply sorts out collection‘s element
in ascending mode. For example, the rule „Document
registration number must be in ascending order within
a file” could be expressed by defining attribute sorted
Documents of collection type in context of file (example
11).

// example 11

context File

def: sortedDocuments: Sequence(Document) = self.
consistOf->sortedBy(registrationNumber)

Fig. 9. Functional evaluator rule: class diagram

	 The expression above collects sorted elements of
documents collection into sequence. The sequence as well
as other type of the OCL collections defines a sequence and
ordering the elements of collection. Therefore, if it is required
that collection elements are served out in some pattern
operations asSequence(), asBag(), asSet(), asOrderedSet()
could be applied, as it is described in Ref. [7]. Combining
mentioned operators with iterators for collections could
produce sequences of elements arranged in predefined way,
thus, providing a possibility to express complex rules.

3.6	 Comparative evaluators and calculators

Comparative evaluators describe comparisons between
pairs of instances of object classes. The comparisons may
be 'equal to', 'not-equal-to', 'greater-than', 'greater-than-
or-equal-to', 'less-than', or 'less-than-or-equal-to', and so
forth [4]. The OCL supports different logical operators for
this purpose and some of them were discussed above. It
should be noticed that the OCL is strongly typed language,
therefore compared objects or values should be carefully
chosen.
	 Calculators involve any standard computation, e.g.
sum, subtract, max, min, med, etc. Calculations in the
OCL are possible between two data types: integer and
real. Calculators may be expressed using standard OCL
calculating operations (summary, subtraction, division,
modulus, etc.) but as well as in the case of comparative
evaluators conformance of types is required.

3.7	 Update controllers

Update controllers prescribe whether updates to a
database may occur and may be of the following types: i)
frozen (requiring existence of anchor object to make some
operation to correspondent object); ii) frozen to users (the
same as above, but restricted to specific list of users);
iii) enabled (existence of every instance of anchor object
enables operations on correspondent object), and iv)
enabled with reversal (when anchor object is deleted the
state of correspondent object is reversed).
	 The OCL is the constraint language therefore every
expression in some way may confine an operation to a
database. In object-oriented systems object attributes
values are set or got by some defined operation.
Therefore, if it is required to restrict some changes of
value then pre-and-post conditions for operations could
by applied. For example, restriction on change of value
may be used for post condition for an operation denoting
that value must be the same as at start of operation by
introducing @pre keyword as it was shown in the previous
examples. Certainly, if it is required to relate constraints
on operations with some users, e.g. restrict execution of
operation or change of value to specific users, additional
constraint should be introduced into the model to check
whether operation is executed by the related user or not.
	 Consider the following rule “Only assistant can register
internal documents” requiring an assistant role to execute
the operation register(). One of possible expressions of
this rule may be introduction of a new operation into
document class. The operation, e.g. checkRole(event:
String, role: Role) could be of Boolean return type checking
whether some event is made up by some role. Additionally,
it should be mentioned that in Ref. [18] much attention
is made on modelling access control with the UML/OCL,
where suggestions on modelling such type of rules are
proposed.

3.8	 Timing controllers

Timing controllers prescribe tests for the length of time
that instances of correspondent objects have (or have
not) existed [4]. The OCL does not support the possibility
to express time-based constraints which could confine
objects states according to time. Therefore, additional
elements (such as time utility) could be introduced to
model or extension to the OCL could be provided as
suggested in Ref. [19],[20].

INNOVATIVE INFOTECHNOLOGIES FOR SCIENCE, BUSINESS AND EDUCATION, Vol. 1 (6) 2009. Pp. 2.1–2.10

2.10

Normantas et al. Modelling business rules

Conclusions

In this paper, research on possibilities to express different
types of action assertion business rules with the UML/
OCL was made. It was established that the combination
of the UML and the OCL is expressible enough to capture
most of action assertion type rules, both structural and
behavioural.
	 The OCL supports operations on collections of the
UML model elements, therefore restrictions on population
of object instances could be expressed as it is required by
instance verifiers.
	 The OCL provides calculative and logical operators,
which may be used to express functional evaluators. The
combination of operators and operations for collections
may be used to express type verifiers.
	 The OCL has pre and post conditions on operations of
classes, therefore restrictions on data manipulation could
be applied in many different ways.
	 The OCL provides possibility to query the UML model;
therefore, the OCL may be used to express derived

References

[1]	 Morgan T. Business Rules and Information Systems: Aligning IT with Business Goals. Addison Wesley. 2002, pp.
384

[2]	 Hay D.C., Requirements Analysis: From Business Views to Architecture. Prentice Hall, 2002
[3]	 Von Halle B. Business Rules Applied: Building Better Systems Using the Business Rules Approach. John Wiley

and Sons. 2002, pp. 495
[4]	 Hay D.C. et al. Defining Business Rules - What Are They Really?//GUIDE project. 2001, available from: [http://

www.businessrulesgroup.org/first_paper/br01c0.html], retrieved 2009 01 10
[5]	 Booch G., Rumbaugh J., Jacobson I. The Unified Modeling Language User Guide, Second Edition. Addison Wesley.

2005.
[6]	 OMG. OCL 2.0 specification. 2005. Available from: [http://www.omg.org/docs/ptc/05-06-06.pdf], retrieved

2009 01 15
[7]	 Warmer J., Kleppe A. Object Constraint Language, The: Getting Your Models Ready for MDA, Second Edition.

Addison Wesley. 2003, pp. 347
[8]	 Eriksson H.E., Penker M., Business Modelling with UML: Business Patents at Work. John Wiley and Sons. 2000.
[9]	 Zimbrao G. et al. Enforcement of Business Rules in Relational Databases Using Constraints//UMFG Database

Group. 2007, available from: [http://www.lbd.dcc.ufmg.br:8080/sbbd2003/artigos/paper010.pdf], retrieved
2008 12 20

[10]	 Sosunovas S., Vasilecas O. Verslo taisyklių modeliavimas OCL kalba (in Lithuanian) // Lietuvos matematikos
rinkinys. Vilnius. 2004, pp. 369-376

[11]	 OMG. Semantics of Business Vocabulary and Business Rules, v 1.0. 2008, available from: [http://www.omg.org/
docs/formal/08-01-02.pdf], retrieved 2008 10 15

[12]	 Lebedys E., Vasilecas O. Verslo taisyklių modeliavimo kalbų analizė (in Lithuanian) // "Informacinės
Technologijos‘2004“. Technologija. 2004, pp. 487-494

[13]	 Herbst H. et al. The Specification of Business Rules: A Comparison of Selected Methodologies. Methods and
Associated Tools for the Information System Life Cycle, Amsterdam et al.: Elsevier 1994, pp. 29-46.

[14]	 MoReq2, Model Requirements Specification for the Management of Electronic Records, available from: [http://
www.moreq2.eu/], retrieved 2008 11 21

[15]	 Ross G.R., Principles of the Business Rule Approach. Addison Wesley. 2003, pp. 352
[16]	 Warmer J., Kleppe, A., Cook, S., Informal Formality? The Object Constraint Language and its application in the

metamodel. in Proc. International Conference on the Unified Modelling Language (UML), Springer-Verlag. 1999.
[17]	 Warmer J., Kleppe, A., OCL : The Constraint Language of the UML. Journal of Object-Oriented Programming,

12(1):10–13. 1999.
[18]	 Ahn G.J., Shin M.E., Role-Based authorization constraints specification using Object Constraint Language//

Enabling Technologies: Infrastructure for Collaborative Enterprises, Proceedings tenth IEEE international
Workshops. 2001, pp. 157-162

[19]	 Flake S. Temporal OCL extensions for specification of real-time constraints. In Workshop Specification and
Validation of (SVERTS’03). 2003.

[20]	 Hamie A., Mitchel R., Howse J. Time-Based Constraints in the Object Constraint Language. School of Computing
and Mathematical Sciences, University of Brighton. 2006, available from : [http://www.biro.brighton.ac.uk/biro],
retrieved 2008 12 14

values. Supported collection data types enable to
predefine required structure of the collection; in addition,
iterators enable to make a more complex structure of the
collection.
	 The OCL supports only limited set of data types,
therefore there is no possibility to express BR requiring
comparison of variables with constants (e.g. it is not
possible to compare dates).
	 The OCL does not provide a possibility to express
time-based constraints which could constraint objects
states according to time, therefore suspending model
with additional constructs is required, or extension for the
OCL should be provided.

Acknowledgements

The work is supported by Lithuanian State Science
and Studies Foundation according to High Technology
Development Program Project “Business Rules Solutions
for Information Systems Development (VeTIS)” Reg. No.
B-07042.

INNOVATIVE INFOTECHNOLOGIES FOR SCIENCE, BUSINESS AND EDUCATION, Vol. 1 (6) 2009. Pp. 2.1–2.10

